These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 9009064)
1. Spore photoproduct lyase operon (splAB) regulation during Bacillus subtilis sporulation: modulation of splB-lacZ fusion expression by P1 promoter mutations and by an in-frame deletion of splA. Pedraza-Reyes M; Gutiérrez-Corona F; Nicholson WL Curr Microbiol; 1997 Mar; 34(3):133-7. PubMed ID: 9009064 [TBL] [Abstract][Full Text] [Related]
2. Analysis of spore photoproduct lyase operon (splAB) function using targeted deletion-insertion mutations spanning the Bacillus subtilis operons ptsHI and splAB. Nicholson WL; Chooback L; Fajardo-Cavazos P Mol Gen Genet; 1997 Aug; 255(6):587-94. PubMed ID: 9323362 [TBL] [Abstract][Full Text] [Related]
3. Temporal regulation and forespore-specific expression of the spore photoproduct lyase gene by sigma-G RNA polymerase during Bacillus subtilis sporulation. Pedraza-Reyes M; Gutiérrez-Corona F; Nicholson WL J Bacteriol; 1994 Jul; 176(13):3983-91. PubMed ID: 8021181 [TBL] [Abstract][Full Text] [Related]
4. The TRAP-like SplA protein is a trans-acting negative regulator of spore photoproduct lyase synthesis during Bacillus subtilis sporulation. Fajardo-Cavazos P; Nicholson WL J Bacteriol; 2000 Jan; 182(2):555-60. PubMed ID: 10629212 [TBL] [Abstract][Full Text] [Related]
5. Spore photoproduct lyase from Bacillus subtilis spores is a novel iron-sulfur DNA repair enzyme which shares features with proteins such as class III anaerobic ribonucleotide reductases and pyruvate-formate lyases. Rebeil R; Sun Y; Chooback L; Pedraza-Reyes M; Kinsland C; Begley TP; Nicholson WL J Bacteriol; 1998 Sep; 180(18):4879-85. PubMed ID: 9733691 [TBL] [Abstract][Full Text] [Related]
6. Spore photoproduct (SP) lyase from Bacillus subtilis specifically binds to and cleaves SP (5-thyminyl-5,6-dihydrothymine) but not cyclobutane pyrimidine dimers in UV-irradiated DNA. Slieman TA; Rebeil R; Nicholson WL J Bacteriol; 2000 Nov; 182(22):6412-7. PubMed ID: 11053385 [TBL] [Abstract][Full Text] [Related]
7. Regulation of expression of genes coding for small, acid-soluble proteins of Bacillus subtilis spores: studies using lacZ gene fusions. Mason JM; Hackett RH; Setlow P J Bacteriol; 1988 Jan; 170(1):239-44. PubMed ID: 3121585 [TBL] [Abstract][Full Text] [Related]
8. Developmental regulation of transcription of the Bacillus subtilis ftsAZ operon. Gonzy-Tréboul G; Karmazyn-Campelli C; Stragier P J Mol Biol; 1992 Apr; 224(4):967-79. PubMed ID: 1569582 [TBL] [Abstract][Full Text] [Related]
9. Use of a lacZ fusion to study the role of the spoO genes of Bacillus subtilis in developmental regulation. Zuber P; Losick R Cell; 1983 Nov; 35(1):275-83. PubMed ID: 6414720 [TBL] [Abstract][Full Text] [Related]
10. Use of a lacZ gene fusion to determine the dependence pattern and the spore compartment expression of sporulation operon spoVA in spo mutants of Bacillus subtilis. Errington J; Mandelstam J J Gen Microbiol; 1986 Nov; 132(11):2977-85. PubMed ID: 3114420 [TBL] [Abstract][Full Text] [Related]
11. Characterization of cotJ, a sigma E-controlled operon affecting the polypeptide composition of the coat of Bacillus subtilis spores. Henriques AO; Beall BW; Roland K; Moran CP J Bacteriol; 1995 Jun; 177(12):3394-406. PubMed ID: 7768848 [TBL] [Abstract][Full Text] [Related]
12. Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H. Wray LV; Ferson AE; Fisher SH J Bacteriol; 1997 Sep; 179(17):5494-501. PubMed ID: 9287005 [TBL] [Abstract][Full Text] [Related]
13. Use of a lacZ gene fusion to determine the dependence pattern of sporulation operon spoIIIC in spo mutants of Bacillus subtilis: a branched pathway of expression of sporulation operons. Turner SM; Errington J; Mandelstam J J Gen Microbiol; 1986 Nov; 132(11):2995-3003. PubMed ID: 3114422 [TBL] [Abstract][Full Text] [Related]
14. The regulation of transcription of the gerA spore germination operon of Bacillus subtilis. Feavers IM; Foulkes J; Setlow B; Sun D; Nicholson W; Setlow P; Moir A Mol Microbiol; 1990 Feb; 4(2):275-82. PubMed ID: 2110996 [TBL] [Abstract][Full Text] [Related]
15. Molecular dissection of mutations in the Bacillus subtilis spore photoproduct lyase gene which affect repair of spore DNA damage caused by UV radiation. Fajardo-Cavazos P; Nicholson WL J Bacteriol; 1995 Aug; 177(15):4402-9. PubMed ID: 7635825 [TBL] [Abstract][Full Text] [Related]
16. Cloning and dependence pattern of the sporulation operon spoVH. Cutting SM; Mandelstam J J Bacteriol; 1988 Feb; 170(2):802-9. PubMed ID: 2828324 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the regulation and function of five genes encoding small, acid-soluble spore proteins of Bacillus subtilis. Cabrera-Hernandez A; Setlow P Gene; 2000 May; 248(1-2):169-81. PubMed ID: 10806362 [TBL] [Abstract][Full Text] [Related]
18. A promoter whose utilization is temporally regulated during sporulation in Bacillus subtilis. Stephens MA; Lang N; Sandman K; Losick R J Mol Biol; 1984 Jul; 176(3):333-48. PubMed ID: 6205155 [TBL] [Abstract][Full Text] [Related]
19. Sporulation operon spoIVF and the characterization of mutations that uncouple mother-cell from forespore gene expression in Bacillus subtilis. Cutting S; Roels S; Losick R J Mol Biol; 1991 Oct; 221(4):1237-56. PubMed ID: 1942049 [TBL] [Abstract][Full Text] [Related]
20. Essential internal promoter in the spoIIIA locus of Bacillus subtilis. Guillot C; Moran CP J Bacteriol; 2007 Oct; 189(20):7181-9. PubMed ID: 17693505 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]