BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 9009293)

  • 1. Ferric iron reduction by Cryptococcus neoformans.
    Nyhus KJ; Wilborn AT; Jacobson ES
    Infect Immun; 1997 Feb; 65(2):434-8. PubMed ID: 9009293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferrous iron uptake in Cryptococcus neoformans.
    Jacobson ES; Goodner AP; Nyhus KJ
    Infect Immun; 1998 Sep; 66(9):4169-75. PubMed ID: 9712764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3-Hydroxyanthranilate in Cryptococcus neoformans: a secreted reductant that does not enable wood rot.
    Jacobson ES; Milhausen SM; Manthey MK
    Med Mycol; 2003 Aug; 41(4):309-20. PubMed ID: 12964724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox buffering by melanin and Fe(II) in Cryptococcus neoformans.
    Jacobson ES; Hong JD
    J Bacteriol; 1997 Sep; 179(17):5340-6. PubMed ID: 9286986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of Fe(III) is required for uptake of nonheme iron by Caco-2 cells.
    Han O; Failla ML; Hill AD; Morris ER; Smith JC
    J Nutr; 1995 May; 125(5):1291-9. PubMed ID: 7738689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-transferrin iron uptake by trophoblast cells in culture. Significance of a NADH-dependent ferrireductase.
    Verrijt CE; Kroos MJ; Huijskes-Heins MI; van Eijk HG; van Dijk JP
    Placenta; 1998 Sep; 19(7):525-30. PubMed ID: 9778126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferric reduction is a potential iron acquisition mechanism for Histoplasma capsulatum.
    Timmerman MM; Woods JP
    Infect Immun; 1999 Dec; 67(12):6403-8. PubMed ID: 10569756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter.
    Velayudhan J; Hughes NJ; McColm AA; Bagshaw J; Clayton CL; Andrews SC; Kelly DJ
    Mol Microbiol; 2000 Jul; 37(2):274-86. PubMed ID: 10931324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron uptake by fungi: contrasted mechanisms with internal or external reduction.
    De Luca NG; Wood PM
    Adv Microb Physiol; 2000; 43():39-74. PubMed ID: 10907554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential role for extracellular glutathione-dependent ferric reductase in utilization of environmental and host ferric compounds by Histoplasma capsulatum.
    Timmerman MM; Woods JP
    Infect Immun; 2001 Dec; 69(12):7671-8. PubMed ID: 11705947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron assimilation in Cryptococcus neoformans.
    Jacobson ES; Vartivarian SE
    J Med Vet Mycol; 1992; 30(6):443-50. PubMed ID: 1287163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic and physiologic characterization of ferric/cupric reductase constitutive mutants of Cryptococcus neoformans.
    Nyhus KJ; Jacobson ES
    Infect Immun; 1999 May; 67(5):2357-65. PubMed ID: 10225895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of dissimilatory Fe(III) versus NO3- reduction in the hyperthermophilic archaeon Pyrobaculum aerophilum.
    Feinberg LF; Holden JF
    J Bacteriol; 2006 Jan; 188(2):525-31. PubMed ID: 16385043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction and mobilization of iron by a NAD(P)H:flavin oxidoreductase from Escherichia coli.
    Coves J; Fontecave M
    Eur J Biochem; 1993 Feb; 211(3):635-41. PubMed ID: 8436123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Fe2+ and Fe3+ transport by iron-loaded cardiac myocytes.
    Parkes JG; Olivieri NF; Templeton DM
    Toxicology; 1997 Feb; 117(2-3):141-51. PubMed ID: 9057893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of copper depletion on iron uptake mediated by SFT, a stimulator of Fe transport.
    Yu J; Wessling-Resnick M
    J Biol Chem; 1998 Mar; 273(12):6909-15. PubMed ID: 9506995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in Fe(III) reduction in the hyperthermophilic archaeon, Pyrobaculum islandicum, versus mesophilic Fe(III)-reducing bacteria.
    Childers SE; Lovley DR
    FEMS Microbiol Lett; 2001 Feb; 195(2):253-8. PubMed ID: 11179660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae.
    Lesuisse E; Labbe P
    J Gen Microbiol; 1989 Feb; 135(2):257-63. PubMed ID: 11699493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli ferredoxin-NADP+ reductase and oxygen-insensitive nitroreductase are capable of functioning as ferric reductase and of driving the Fenton reaction.
    Takeda K; Sato J; Goto K; Fujita T; Watanabe T; Abo M; Yoshimura E; Nakagawa J; Abe A; Kawasaki S; Niimura Y
    Biometals; 2010 Aug; 23(4):727-37. PubMed ID: 20407804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of exogenous ferric iron by a surface-associated ferric reductase of Listeria spp.
    Deneer HG; Healey V; Boychuk I
    Microbiology (Reading); 1995 Aug; 141 ( Pt 8)():1985-1992. PubMed ID: 7551061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.