These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 901012)

  • 1. Lead accumulation rates in tissues of the estuarine teleost fish, Gillichthys mirabilis: salinity and temperature effects.
    Somero GN; Chow TJ; Yancey PH; Snyder CB
    Arch Environ Contam Toxicol; 1977; 6(2-3):337-48. PubMed ID: 901012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lead effects on tissue and whole organism respiration of the estuarine teleost fish, Gillichthys mirabilis.
    Somero GN; Yancey PH; Chow TJ; Snyder CB
    Arch Environ Contam Toxicol; 1977; 6(2-3):349-54. PubMed ID: 901013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological (antioxidant) responses of estuarine fishes to variability in dissolved oxygen.
    Ross SW; Dalton DA; Kramer S; Christensen BL
    Comp Biochem Physiol C Toxicol Pharmacol; 2001 Nov; 130(3):289-303. PubMed ID: 11701386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses to salinity and the effect of prolactin on whole animal transepithelial potential in the gobiid teleost, Gillichthys mirabilis.
    Iwata M; Bern HA
    Gen Comp Endocrinol; 1985 Dec; 60(3):434-40. PubMed ID: 4076762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion transport in gills of the euryhaline fish Gillichthys mirabilis is facilitated by a phosphocreatine circuit.
    Kültz D; Somero GN
    Am J Physiol; 1995 Apr; 268(4 Pt 2):R1003-12. PubMed ID: 7733382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of temperature and salinity on 17-α-ethynylestradiol uptake and its relationship to oxygen consumption in the model euryhaline teleost (Fundulus heteroclitus).
    Blewett T; MacLatchy DL; Wood CM
    Aquat Toxicol; 2013 Feb; 127():61-71. PubMed ID: 22575576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of salinity on chloride cells and Na+, K(+)-ATPase activity in the teleost Gillichthys mirabilis.
    Yoshikawa JS; McCormick SD; Young G; Bern HA
    Comp Biochem Physiol Comp Physiol; 1993 Jun; 105(2):311-7. PubMed ID: 8101158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in protein patterns of gill epithelial cells of the fish Gillichthys mirabilis after osmotic and thermal acclimation.
    Kültz D; Somero GN
    J Comp Physiol B; 1996; 166(2):88-100. PubMed ID: 8766907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salinity change and cell volume: the response of tissues from the estuarine mussel Geukensia demissa.
    Neufeld DS; Wright SH
    J Exp Biol; 1996 Jul; 199(Pt 7):1619-30. PubMed ID: 8699159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sphingomyelin metabolism is linked to salt transport in the gills of euryhaline fish.
    el Babili M; Brichon G; Zwingelstein G
    Lipids; 1996 Apr; 31(4):385-92. PubMed ID: 8743050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative immunohistochemical study of Carassius RFamide localization in teleost guts in different salinity habitats.
    Akiyoshi H; Inoue A; Fujimoto M
    Zoolog Sci; 2005 Jan; 22(1):57-63. PubMed ID: 15684584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioavailability of silver and its relationship to ionoregulation and silver speciation across a range of salinities in the gulf toadfish (Opsanus beta).
    Wood CM; McDonald MD; Walker P; Grosell M; Barimo JF; Playle RC; Walsh PJ
    Aquat Toxicol; 2004 Nov; 70(2):137-57. PubMed ID: 15522431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-term low-salinity tolerance by the longhorn sculpin, Myoxocephalus octodecimspinosus.
    Hyndman KA; Evans DH
    J Exp Zool A Ecol Genet Physiol; 2009 Jan; 311(1):45-56. PubMed ID: 18831058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiocesium uptake, trophic transfer, and exposure in three estuarine fish with contrasting feeding habits.
    Pan K; Wang WX
    Chemosphere; 2016 Nov; 163():499-507. PubMed ID: 27565318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contaminants in water, sediment and fish biomonitor species from natural and artificial estuarine habitats along the urbanized Gold Coast, Queensland.
    Waltham NJ; Teasdale PR; Connolly RM
    J Environ Monit; 2011 Dec; 13(12):3409-19. PubMed ID: 22030552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of salinity on short-term waterborne zinc uptake, accumulation and sub-lethal toxicity in the green shore crab (Carcinus maenas).
    Niyogi S; Blewett TA; Gallagher T; Fehsenfeld S; Wood CM
    Aquat Toxicol; 2016 Sep; 178():132-40. PubMed ID: 27486083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of hepatic growth hormone binding sites in two fish species, Gillichthys mirabilis (Teleostei) and Acipenser transmontanus (Chondrostei).
    Tarpey JF; Nicoll CS
    Gen Comp Endocrinol; 1985 Oct; 60(1):39-50. PubMed ID: 2996975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Branchial osmoregulatory response to salinity in the gilthead sea bream, Sparus auratus.
    Laiz-Carrión R; Guerreiro PM; Fuentes J; Canario AV; Martín Del Río MP; Mancera JM
    J Exp Zool A Comp Exp Biol; 2005 Jul; 303(7):563-76. PubMed ID: 15945079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion transport by the urinary bladder of the gobiid teleost, Gillichthys mirabilis.
    Loretz CA; Bern HA
    Am J Physiol; 1980 Nov; 239(5):R415-23. PubMed ID: 7435655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioaccumulation and distribution of silver in four marine teleosts and two marine elasmobranchs: influence of exposure duration, concentration, and salinity.
    Webb NA; Wood CM
    Aquat Toxicol; 2000 May; 49(1-2):111-129. PubMed ID: 10814811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.