These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 9010399)

  • 1. Hydrodynamic properties of hydrocephalus shunts: United Kingdom Shunt Evaluation Laboratory.
    Czosnyka M; Czosnyka Z; Whitehouse H; Pickard JD
    J Neurol Neurosurg Psychiatry; 1997 Jan; 62(1):43-50. PubMed ID: 9010399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrocephalus shunt technology: 20 years of experience from the Cambridge Shunt Evaluation Laboratory.
    Chari A; Czosnyka M; Richards HK; Pickard JD; Czosnyka ZH
    J Neurosurg; 2014 Mar; 120(3):697-707. PubMed ID: 24405071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Posture-related overdrainage: comparison of the performance of 10 hydrocephalus shunts in vitro.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Neurosurgery; 1998 Feb; 42(2):327-33; discussion 333-4. PubMed ID: 9482183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic properties of hydrocephalus shunts.
    Czosnyka Z; Czosnyka M; Richards H; Pickard JD
    Acta Neurochir Suppl; 1998; 71():334-9. PubMed ID: 9779223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Who Needs a Revision? 20 Years of Cambridge Shunt Lab.
    Czosnyka Z; Czosnyka M; Pickard JD; Chari A
    Acta Neurochir Suppl; 2016; 122():347-51. PubMed ID: 27165934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of three new models of hydrocephalus shunts.
    Czosnyka ZH; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir Suppl; 2005; 95():223-7. PubMed ID: 16463854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shunt testing in-vivo: a method based on the data from the UK shunt evaluation laboratory.
    Czosnyka ZH; Czosnyka M; Pickard JD
    Acta Neurochir Suppl; 2002; 81():27-30. PubMed ID: 12168323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory evaluation of the phoenix CRx diamond valve.
    Czosnyka ZH; Czosnyka M; Richards HK; Pickard JD
    Neurosurgery; 2001 Mar; 48(3):689-93; discussion 693-4. PubMed ID: 11270563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Addressing the siphoning effect in new shunt designs by decoupling the activation pressure and the pressure gradient across the valve.
    Mattei TA; Morris M; Nowak K; Smith D; Yee J; Goulart CR; Zborowski A; Lin JJ
    J Neurosurg Pediatr; 2013 Feb; 11(2):181-7. PubMed ID: 23215676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Posture related in-vitro characterization of a flow regulated MEMS CSF valve.
    Tachatos N; Chappel E; Dumont-Fillon D; Meboldt M; Daners MS
    Biomed Microdevices; 2020 Feb; 22(1):21. PubMed ID: 32088807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rationale and methodology of the multicenter pediatric cerebrospinal fluid shunt design trial. Pediatric Hydrocephalus Treatment Evaluation Group.
    Drake JM; Kestle J
    Childs Nerv Syst; 1996 Aug; 12(8):434-47. PubMed ID: 8891361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overdrainage and shunt technology. A critical comparison of programmable, hydrostatic and variable-resistance valves and flow-reducing devices.
    Aschoff A; Kremer P; Benesch C; Fruh K; Klank A; Kunze S
    Childs Nerv Syst; 1995 Apr; 11(4):193-202. PubMed ID: 7621479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebrospinal fluid hydrodynamics after placement of a shunt with an antisiphon device: a long-term study.
    Lundkvist B; Eklund A; Kristensen B; Fagerlund M; Koskinen LO; Malm J
    J Neurosurg; 2001 May; 94(5):750-6. PubMed ID: 11354406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ventriculoperitoneal Shunt Drainage Increases With Gravity and Cerebrospinal Fluid Pressure Pulsations: Benchtop Model.
    Koueik J; Iskandar BJ; Yang Z; Kraemer MR; Armstrong S; Wakim V; Broman AT; Medow J; Luzzio C; Hsu DA
    Neurosurgery; 2021 Nov; 89(6):1141-1147. PubMed ID: 34528096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adjustable antisiphon shunt.
    Sood S; Canady AI; Ham SD
    Childs Nerv Syst; 1999 May; 15(5):246-9. PubMed ID: 10392496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable Shunt Assistant tested in Cambridge shunt evaluation laboratory.
    Czosnyka M; Czosnyka Z; Pickard JD
    Acta Neurochir Suppl; 2012; 113():71-6. PubMed ID: 22116427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CSF outflow resistance as predictor of shunt function. A long-term study.
    Malm J; Lundkvist B; Eklund A; Koskinen LO; Kristensen B
    Acta Neurol Scand; 2004 Sep; 110(3):154-60. PubMed ID: 15285771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic shunt testing applying short lasting pressure waves--inertia of shunt systems.
    Schuhmann MU; Schneekloth CG; Klinge P; Engel M; Samii M; Brinker T
    Acta Neurochir Suppl; 2002; 81():19-21. PubMed ID: 12168301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of programmable shunt valves vs standard valves for communicating hydrocephalus of adults: a retrospective analysis of 407 patients.
    Ringel F; Schramm J; Meyer B
    Surg Neurol; 2005 Jan; 63(1):36-41; discussion 41. PubMed ID: 15639519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.