BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 9010597)

  • 21. Comparison of the dynamics of substrate access channels in three cytochrome P450s reveals different opening mechanisms and a novel functional role for a buried arginine.
    Winn PJ; Lüdemann SK; Gauges R; Lounnas V; Wade RC
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5361-6. PubMed ID: 11959989
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NMR studies of substrate binding to cytochrome P450 BM3: comparisons to cytochrome P450 cam.
    Modi S; Primrose WU; Boyle JM; Gibson CF; Lian LY; Roberts GC
    Biochemistry; 1995 Jul; 34(28):8982-8. PubMed ID: 7619797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fatty acid metabolism, conformational change, and electron transfer in cytochrome P-450(BM-3).
    Li H; Poulos TL
    Biochim Biophys Acta; 1999 Nov; 1441(2-3):141-9. PubMed ID: 10570242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pivotal role of water in the mechanism of P450BM-3.
    Haines DC; Tomchick DR; Machius M; Peterson JA
    Biochemistry; 2001 Nov; 40(45):13456-65. PubMed ID: 11695892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency.
    Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC
    J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electron transfer between the FMN and heme domains of cytochrome P450BM-3. Effects of substrate and CO.
    Hazzard JT; Govindaraj S; Poulos TL; Tollin G
    J Biol Chem; 1997 Mar; 272(12):7922-6. PubMed ID: 9065460
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbon monoxide binding to cytochrome P450BM-3: evidence for a substrate-dependent conformational change.
    McLean MA; Yeom H; Sligar SG
    Biochimie; 1996; 78(8-9):700-5. PubMed ID: 9010598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fatty acid-induced alteration of the porphyrin macrocycle of cytochrome P450 BM3.
    Macdonald ID; Munro AW; Smith WE
    Biophys J; 1998 Jun; 74(6):3241-9. PubMed ID: 9635777
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural and spectroscopic characterization of P450 BM3 mutants with unprecedented P450 heme iron ligand sets. New heme ligation states influence conformational equilibria in P450 BM3.
    Girvan HM; Seward HE; Toogood HS; Cheesman MR; Leys D; Munro AW
    J Biol Chem; 2007 Jan; 282(1):564-72. PubMed ID: 17077084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A three-dimensional protein model for human cytochrome P450 2D6 based on the crystal structures of P450 101, P450 102, and P450 108.
    de Groot MJ; Vermeulen NP; Kramer JD; van Acker FA; Donné-Op den Kelder GM
    Chem Res Toxicol; 1996; 9(7):1079-91. PubMed ID: 8902262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular modeling of cytochrome P450 3A4.
    Szklarz GD; Halpert JR
    J Comput Aided Mol Des; 1997 May; 11(3):265-72. PubMed ID: 9263853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flavocytochrome P450 BM3 substrate selectivity and electron transfer in a model cytochrome P450.
    Munro AW; Noble MA; Ost TW; Green AJ; McLean KJ; Robledo L; Miles CS; Murdoch J; Chapman SK
    Subcell Biochem; 2000; 35():297-315. PubMed ID: 11192726
    [No Abstract]   [Full Text] [Related]  

  • 33. Active site analysis of P450 enzymes: comparative magnetic circular dichroism spectroscopy.
    Andersson LA; Johnson AK; Peterson JA
    Arch Biochem Biophys; 1997 Sep; 345(1):79-87. PubMed ID: 9281314
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of Thr268 in oxygen activation of cytochrome P450BM-3.
    Yeom H; Sligar SG; Li H; Poulos TL; Fulco AJ
    Biochemistry; 1995 Nov; 34(45):14733-40. PubMed ID: 7578081
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction and evaluation of a three-dimensional structure of cytochrome P450choP enzyme (CYP105C1).
    Chang YT; Loew GH
    Protein Eng; 1996 Sep; 9(9):755-66. PubMed ID: 8888141
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FTIR studies of the redox partner interaction in cytochrome P450: the Pdx-P450cam couple.
    Karyakin A; Motiejunas D; Wade RC; Jung C
    Biochim Biophys Acta; 2007 Mar; 1770(3):420-31. PubMed ID: 17014964
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineered alkane-hydroxylating cytochrome P450(BM3) exhibiting nativelike catalytic properties.
    Fasan R; Chen MM; Crook NC; Arnold FH
    Angew Chem Int Ed Engl; 2007; 46(44):8414-8. PubMed ID: 17886313
    [No Abstract]   [Full Text] [Related]  

  • 38. Structure of cytochrome P450eryF: substrate, inhibitors, and model compounds bound in the active site.
    Cupp-Vickery JR; Poulos TL
    Steroids; 1997 Jan; 62(1):112-6. PubMed ID: 9029724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Association of cytochromes P450 with their reductases: opposite sign of the electrostatic interactions in P450BM-3 as compared with the microsomal 2B4 system.
    Davydov DR; Kariakin AA; Petushkova NA; Peterson JA
    Biochemistry; 2000 May; 39(21):6489-97. PubMed ID: 10828964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flavin supported fatty acid oxidation by the heme domain of Bacillus megaterium cytochrome P450BM-3.
    Gonvindaraj S; Li H; Poulos TL
    Biochem Biophys Res Commun; 1994 Sep; 203(3):1745-9. PubMed ID: 7945324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.