BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 9010603)

  • 21. Probing electron transfer in flavocytochrome P-450 BM3 and its component domains.
    Munro AW; Daff S; Coggins JR; Lindsay JG; Chapman SK
    Eur J Biochem; 1996 Jul; 239(2):403-9. PubMed ID: 8706747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitation of FAD-dependent cytochrome P450 reductase activity by photoreduction.
    Hodgson AV; Strobel HW
    Anal Biochem; 1996 Dec; 243(1):154-7. PubMed ID: 8954538
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of the linker region connecting the reductase and heme domains in cytochrome P450BM-3.
    Govindaraj S; Poulos TL
    Biochemistry; 1995 Sep; 34(35):11221-6. PubMed ID: 7669780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electron transfer is activated by calmodulin in the flavin domain of human neuronal nitric oxide synthase.
    Guan ZW; Iyanagi T
    Arch Biochem Biophys; 2003 Apr; 412(1):65-76. PubMed ID: 12646269
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional interactions in cytochrome P450BM3. Evidence that NADP(H) binding controls redox potentials of the flavin cofactors.
    Murataliev MB; Feyereisen R
    Biochemistry; 2000 Oct; 39(41):12699-707. PubMed ID: 11027150
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of recombinant Bacillus megaterium cytochrome P-450 BM-3 and its two functional domains.
    Li HY; Darwish K; Poulos TL
    J Biol Chem; 1991 Jun; 266(18):11909-14. PubMed ID: 1904873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes.
    Wang M; Roberts DL; Paschke R; Shea TM; Masters BS; Kim JJ
    Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8411-6. PubMed ID: 9237990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stopped-flow kinetic studies of flavin reduction in human cytochrome P450 reductase and its component domains.
    Gutierrez A; Lian LY; Wolf CR; Scrutton NS; Roberts GC
    Biochemistry; 2001 Feb; 40(7):1964-75. PubMed ID: 11329263
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of the redox properties of human NADPH-cytochrome P450 reductase.
    Munro AW; Noble MA; Robledo L; Daff SN; Chapman SK
    Biochemistry; 2001 Feb; 40(7):1956-63. PubMed ID: 11329262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Redox control of the catalytic cycle of flavocytochrome P-450 BM3.
    Daff SN; Chapman SK; Turner KL; Holt RA; Govindaraj S; Poulos TL; Munro AW
    Biochemistry; 1997 Nov; 36(45):13816-23. PubMed ID: 9374858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insight into the redox partner interaction mechanism in cytochrome P450BM-3 using molecular dynamics simulations.
    Verma R; Schwaneberg U; Roccatano D
    Biopolymers; 2014 Mar; 101(3):197-209. PubMed ID: 23754593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain.
    Murataliev MB; Feyereisen R
    Biochemistry; 1996 Nov; 35(47):15029-37. PubMed ID: 8942669
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of the redox potentials and electron transfer properties of the FAD- and FMN-binding domains of the human oxidoreductase NR1.
    Finn RD; Basran J; Roitel O; Wolf CR; Munro AW; Paine MJ; Scrutton NS
    Eur J Biochem; 2003 Mar; 270(6):1164-75. PubMed ID: 12631275
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics of electron transfer in the complex of cytochrome P450 3A4 with the flavin domain of cytochrome P450BM-3 as evidence of functional heterogeneity of the heme protein.
    Fernando H; Halpert JR; Davydov DR
    Arch Biochem Biophys; 2008 Mar; 471(1):20-31. PubMed ID: 18086551
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on the microsomal mixed-function oxidase system: mechanism of action of hepatic NADPH-cytochrome P-450 reductase.
    Iyanagi T; Makino R; Anan FK
    Biochemistry; 1981 Mar; 20(7):1722-30. PubMed ID: 6784758
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential redox and electron-transfer properties of purified yeast, plant and human NADPH-cytochrome P-450 reductases highly modulate cytochrome P-450 activities.
    Louërat-Oriou B; Perret A; Pompon D
    Eur J Biochem; 1998 Dec; 258(3):1040-9. PubMed ID: 9990323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fatty acid metabolism, conformational change, and electron transfer in cytochrome P-450(BM-3).
    Li H; Poulos TL
    Biochim Biophys Acta; 1999 Nov; 1441(2-3):141-9. PubMed ID: 10570242
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interflavin one-electron transfer in the inducible nitric oxide synthase reductase domain and NADPH-cytochrome P450 reductase.
    Yamamoto K; Kimura S; Shiro Y; Iyanagi T
    Arch Biochem Biophys; 2005 Aug; 440(1):65-78. PubMed ID: 16009330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Location of functional centers in the microsomal cytochrome P450 system.
    Centeno F; Gutiérrez-Merino C
    Biochemistry; 1992 Sep; 31(36):8473-81. PubMed ID: 1390631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.