These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 9010761)
1. Selective interaction of synthetic antimicrobial peptides derived from sapecin B with lipid bilayers. Hirakura Y; Alvarez-Bravo J; Kurata S; Natori S; Kirino Y J Biochem; 1996 Dec; 120(6):1130-40. PubMed ID: 9010761 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Wu M; Maier E; Benz R; Hancock RE Biochemistry; 1999 Jun; 38(22):7235-42. PubMed ID: 10353835 [TBL] [Abstract][Full Text] [Related]
3. Branched phospholipids render lipid vesicles more susceptible to membrane-active peptides. Mitchell NJ; Seaton P; Pokorny A Biochim Biophys Acta; 2016 May; 1858(5):988-94. PubMed ID: 26514602 [TBL] [Abstract][Full Text] [Related]
4. Interaction of CAP18-derived peptides with membranes made from endotoxins or phospholipids. Gutsmann T; Hagge SO; Larrick JW; Seydel U; Wiese A Biophys J; 2001 Jun; 80(6):2935-45. PubMed ID: 11371466 [TBL] [Abstract][Full Text] [Related]
5. Androctonin, a hydrophilic disulphide-bridged non-haemolytic anti-microbial peptide: a plausible mode of action. Hetru C; Letellier L; Oren Z; Hoffmann JA; Shai Y Biochem J; 2000 Feb; 345 Pt 3(Pt 3):653-64. PubMed ID: 10642525 [TBL] [Abstract][Full Text] [Related]
6. Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis. Allende D; McIntosh TJ Biochemistry; 2003 Feb; 42(4):1101-8. PubMed ID: 12549932 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the antimicrobial peptide derived from sapecin B, an antibacterial protein of Sarcophaga peregrina (flesh fly). Yamada K; Natori S Biochem J; 1994 Mar; 298 Pt 3(Pt 3):623-8. PubMed ID: 8141776 [TBL] [Abstract][Full Text] [Related]
8. Interaction with phospholipid bilayers, ion channel formation, and antimicrobial activity of basic amphipathic alpha-helical model peptides of various chain lengths. Agawa Y; Lee S; Ono S; Aoyagi H; Ohno M; Taniguchi T; Anzai K; Kirino Y J Biol Chem; 1991 Oct; 266(30):20218-22. PubMed ID: 1718959 [TBL] [Abstract][Full Text] [Related]
9. Interaction of a novel antimicrobial peptide isolated from the venom of solitary bee Colletes daviesanus with phospholipid vesicles and Escherichia coli cells. Čujová S; Bednárová L; Slaninová J; Straka J; Čeřovský V J Pept Sci; 2014 Nov; 20(11):885-95. PubMed ID: 25123582 [TBL] [Abstract][Full Text] [Related]
10. Design and synthesis of amphipathic 3(10)-helical peptides and their interactions with phospholipid bilayers and ion channel formation. Iwata T; Lee S; Oishi O; Aoyagi H; Ohno M; Anzai K; Kirino Y; Sugihara G J Biol Chem; 1994 Feb; 269(7):4928-33. PubMed ID: 7508930 [TBL] [Abstract][Full Text] [Related]
11. Influence of proline residues on the antibacterial and synergistic activities of alpha-helical peptides. Zhang L; Benz R; Hancock RE Biochemistry; 1999 Jun; 38(25):8102-11. PubMed ID: 10387056 [TBL] [Abstract][Full Text] [Related]
12. Interaction of linear cationic peptides with phospholipid membranes and polymers of sialic acid. Kuznetsov AS; Dubovskii PV; Vorontsova OV; Feofanov AV; Efremov RG Biochemistry (Mosc); 2014 May; 79(5):459-68. PubMed ID: 24954597 [TBL] [Abstract][Full Text] [Related]
13. Cellular Membrane Composition Requirement by Antimicrobial and Anticancer Peptide GA-K4. Mishig-Ochir T; Gombosuren D; Jigjid A; Tuguldur B; Chuluunbaatar G; Urnukhsaikhan E; Pathak C; Lee BJ Protein Pept Lett; 2017; 24(3):197-205. PubMed ID: 27993125 [TBL] [Abstract][Full Text] [Related]
14. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199 [TBL] [Abstract][Full Text] [Related]
15. Antimicrobial properties and interaction of two Trp-substituted cationic antimicrobial peptides with a lipid bilayer. Bi X; Wang C; Dong W; Zhu W; Shang D J Antibiot (Tokyo); 2014 May; 67(5):361-8. PubMed ID: 24496141 [TBL] [Abstract][Full Text] [Related]
16. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Christensen B; Fink J; Merrifield RB; Mauzerall D Proc Natl Acad Sci U S A; 1988 Jul; 85(14):5072-6. PubMed ID: 2455891 [TBL] [Abstract][Full Text] [Related]
17. Interaction of cationic antimicrobial peptides with model membranes. Zhang L; Rozek A; Hancock RE J Biol Chem; 2001 Sep; 276(38):35714-22. PubMed ID: 11473117 [TBL] [Abstract][Full Text] [Related]
18. Structure-function relations of variant and fragment nisins studied with model membrane systems. Giffard CJ; Dodd HM; Horn N; Ladha S; Mackie AR; Parr A; Gasson MJ; Sanders D Biochemistry; 1997 Apr; 36(13):3802-10. PubMed ID: 9092809 [TBL] [Abstract][Full Text] [Related]
19. Interaction between liposomes and sarcotoxin IA, a potent antibacterial protein of Sarcophaga peregrina (flesh fly). Nakajima Y; Qu XM; Natori S J Biol Chem; 1987 Feb; 262(4):1665-9. PubMed ID: 3543008 [TBL] [Abstract][Full Text] [Related]
20. Antimicrobial Peptide Lactoferricin B-Induced Rapid Leakage of Internal Contents from Single Giant Unilamellar Vesicles. Moniruzzaman M; Alam JM; Dohra H; Yamazaki M Biochemistry; 2015 Sep; 54(38):5802-14. PubMed ID: 26368853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]