These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 9010925)
1. Hydrophobic regions on protein surfaces: definition based on hydration shell structure and a quick method for their computation. Eisenhaber F; Argos P Protein Eng; 1996 Dec; 9(12):1121-33. PubMed ID: 9010925 [TBL] [Abstract][Full Text] [Related]
2. Decomposition of protein experimental compressibility into intrinsic and hydration shell contributions. Dadarlat VM; Post CB Biophys J; 2006 Dec; 91(12):4544-54. PubMed ID: 16997864 [TBL] [Abstract][Full Text] [Related]
3. Analysis of solvent structure in proteins using neutron D2O-H2O solvent maps: pattern of primary and secondary hydration of trypsin. Kossiakoff AA; Sintchak MD; Shpungin J; Presta LG Proteins; 1992 Mar; 12(3):223-36. PubMed ID: 1557350 [TBL] [Abstract][Full Text] [Related]
4. A set of van der Waals and coulombic radii of protein atoms for molecular and solvent-accessible surface calculation, packing evaluation, and docking. Li AJ; Nussinov R Proteins; 1998 Jul; 32(1):111-27. PubMed ID: 9672047 [TBL] [Abstract][Full Text] [Related]
5. The effect of vicinal polar and charged groups on hydrophobic hydration. Cheng YK; Rossky PJ Biopolymers; 1999 Dec; 50(7):742-50. PubMed ID: 10547529 [TBL] [Abstract][Full Text] [Related]
6. Protein hydration and unfolding--insights from experimental partial specific volumes and unfolded protein models. Murphy LR; Matubayasi N; Payne VA; Levy RM Fold Des; 1998; 3(2):105-18. PubMed ID: 9565755 [TBL] [Abstract][Full Text] [Related]
7. Acceptable protein and solvent behavior in primary hydration shell simulations of hen lysozyme. Hamaneh MB; Buck M Biophys J; 2007 Apr; 92(7):L49-51. PubMed ID: 17259273 [TBL] [Abstract][Full Text] [Related]
8. Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity. Yang L; Dordick JS; Garde S Biophys J; 2004 Aug; 87(2):812-21. PubMed ID: 15298890 [TBL] [Abstract][Full Text] [Related]
9. The hydration of globular proteins as derived from volume and compressibility measurements: cross correlating thermodynamic and structural data. Chalikian TV; Totrov M; Abagyan R; Breslauer KJ J Mol Biol; 1996 Jul; 260(4):588-603. PubMed ID: 8759322 [TBL] [Abstract][Full Text] [Related]
10. Prediction of hydration structures around hydrophilic surfaces of proteins by using the empirical hydration distribution functions from a database analysis. Matsuoka D; Nakasako M J Phys Chem B; 2010 Apr; 114(13):4652-63. PubMed ID: 20201497 [TBL] [Abstract][Full Text] [Related]
11. Modeling the hydration of proteins: prediction of structural and hydrodynamic parameters from X-ray diffraction and scattering data. Durchschlag H; Zipper P Eur Biophys J; 2003 Aug; 32(5):487-502. PubMed ID: 12715248 [TBL] [Abstract][Full Text] [Related]
12. Is the first hydration shell of lysozyme of higher density than bulk water? Merzel F; Smith JC Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5378-83. PubMed ID: 11959992 [TBL] [Abstract][Full Text] [Related]
13. Determination of protein surface hydration shell free energy of water motion: theoretical study and molecular dynamics simulation. Sheu SY; Yang DY J Phys Chem B; 2010 Dec; 114(49):16558-66. PubMed ID: 21090707 [TBL] [Abstract][Full Text] [Related]
14. Efficient approximate all-atom solvent accessible surface area method parameterized for folded and denatured protein conformations. Guvench O; Brooks CL J Comput Chem; 2004 Jun; 25(8):1005-14. PubMed ID: 15067676 [TBL] [Abstract][Full Text] [Related]
15. High-density hydration layer of lysozymes: molecular dynamics decomposition of solution scattering data. Merzel F; Smith JC J Chem Inf Model; 2005; 45(6):1593-9. PubMed ID: 16309259 [TBL] [Abstract][Full Text] [Related]
16. Identifying hydrophobic protein patches to inform protein interaction interfaces. Rego NB; Xi E; Patel AJ Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33526682 [TBL] [Abstract][Full Text] [Related]
17. The interdependence of protein surface topography and bound water molecules revealed by surface accessibility and fractal density measures. Kuhn LA; Siani MA; Pique ME; Fisher CL; Getzoff ED; Tainer JA J Mol Biol; 1992 Nov; 228(1):13-22. PubMed ID: 1447777 [TBL] [Abstract][Full Text] [Related]
18. Dehydration-driven solvent exposure of hydrophobic surfaces as a driving force in peptide folding. Daidone I; Ulmschneider MB; Di Nola A; Amadei A; Smith JC Proc Natl Acad Sci U S A; 2007 Sep; 104(39):15230-5. PubMed ID: 17881585 [TBL] [Abstract][Full Text] [Related]
19. Compressibility of the protein-water interface. Persson F; Halle B J Chem Phys; 2018 Jun; 148(21):215102. PubMed ID: 29884062 [TBL] [Abstract][Full Text] [Related]
20. Distinguishing thermodynamic and kinetic views of the preferential hydration of protein surfaces. Priya MH; Shah JK; Asthagiri D; Paulaitis ME Biophys J; 2008 Sep; 95(5):2219-25. PubMed ID: 18515399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]