These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 9011432)

  • 1. Magnetoenterography (MENG): noninvasive measurement of bioelectric activity in human small intestine.
    Richards WO; Bradshaw LA; Staton DJ; Garrard CL; Liu F; Buchanan S; Wikswo JP
    Dig Dis Sci; 1996 Dec; 41(12):2293-301. PubMed ID: 9011432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noninvasive diagnosis of mesenteric ischemia using a SQUID magnetometer.
    Richards WO; Garrard CL; Allos SH; Bradshaw LA; Staton DJ; Wikswo JP
    Ann Surg; 1995 Jun; 221(6):696-704; discussion 704-5. PubMed ID: 7794074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive detection of ischemic bowel.
    Seidel SA; Bradshaw LA; Ladipo JK; Wikswo JP; Richards WO
    J Vasc Surg; 1999 Aug; 30(2):309-19. PubMed ID: 10436451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagnosing intestinal ischemia using a noncontact superconducting quantum interference device.
    Golzarian J; Staton DJ; Wikswo JP; Friedman RN; Richards WO
    Am J Surg; 1994 Jun; 167(6):586-92. PubMed ID: 8209933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superconducting quantum interference device magnetometer for diagnosis of ischemia caused by mesenteric venous thrombosis.
    Allos SH; Staton DJ; Bradshaw LA; Halter S; Wikswo JP; Richards WO
    World J Surg; 1997 Feb; 21(2):173-7; discussion 177-8. PubMed ID: 8995074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation and comparison of magnetic and electric detection of small intestinal electrical activity.
    Bradshaw LA; Allos SH; Wikswo JP; Richards WO
    Am J Physiol; 1997 May; 272(5 Pt 1):G1159-67. PubMed ID: 9176226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An anatomical model of the gastric system for producing bioelectric and biomagnetic fields.
    Buist ML; Cheng LK; Yassi R; Bradshaw LA; Richards WO; Pullan AJ
    Physiol Meas; 2004 Aug; 25(4):849-61. PubMed ID: 15382826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependent component analysis for the magnetogastrographic detection of human electrical response activity.
    Estombelo-Montesco CA; de Araujo DB; Silva Filho AC; Moraes ER; Barros AK; Wakai RT; Baffa O
    Physiol Meas; 2007 Sep; 28(9):1029-44. PubMed ID: 17827651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of the electrical and mechanical gradient of the small intestine.
    Nelsen TS; Becker JC
    Am J Physiol; 1968 Apr; 214(4):749-57. PubMed ID: 5642936
    [No Abstract]   [Full Text] [Related]  

  • 10. Noninvasive detection of small bowel electrical activity from SQUID magnetometer measurements using SOBI.
    Erickson J; Obioha C; Goodale A; Bradshaw A; Richards W
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1871-4. PubMed ID: 19163053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastic properties in the circumferential direction in isolated rat small intestine.
    Duch BU; Petersen JA; Vinter-Jensen L; Gregersen H
    Acta Physiol Scand; 1996 Jun; 157(2):157-63. PubMed ID: 8800355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The human vector magnetogastrogram and magnetoenterogram.
    Bradshaw LA; Ladipo JK; Staton DJ; Wikswo JP; Richards WO
    IEEE Trans Biomed Eng; 1999 Aug; 46(8):959-70. PubMed ID: 10431461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the electrical activity of the gastric remnant after Billroth II gastrectomy in dogs.
    Atanassova E; Kornovski B
    Acta Physiol Pharmacol Bulg; 1993; 19(4):91-6. PubMed ID: 8203282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propagation and electrical entrainment of intestinal slow waves.
    Specht PC; Bortoff A
    Am J Dig Dis; 1972 Apr; 17(4):311-6. PubMed ID: 5019837
    [No Abstract]   [Full Text] [Related]  

  • 15. Measurement of electrical activity of the human small intestine using surface electrodes.
    Chen JD; Schirmer BD; McCallum RW
    IEEE Trans Biomed Eng; 1993 Jun; 40(6):598-602. PubMed ID: 8262544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of transections on the basic electrical rhythm in the canine jejunum.
    Mendel C; Pousse A; Dauchel J; Schang JC; Grenier JF
    Eur Surg Res; 1976; 8(6):528-35. PubMed ID: 1017434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The propagation of segmental contractions along the small intestine.
    Grivel ML; Ruckebusch Y
    J Physiol; 1972 Dec; 227(2):611-25. PubMed ID: 4647272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive biomagnetic detection of intestinal slow wave dysrhythmias in chronic mesenteric ischemia.
    Somarajan S; Muszynski ND; Cheng LK; Bradshaw LA; Naslund TC; Richards WO
    Am J Physiol Gastrointest Liver Physiol; 2015 Jul; 309(1):G52-8. PubMed ID: 25930082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intestinal motility. I. Control mechanisms in the basic electric rhythm of the canine small intestine.
    Hiatt RB; Goodman I; Overweg NI
    J Surg Res; 1971 Sep; 11(9):454-63. PubMed ID: 5094740
    [No Abstract]   [Full Text] [Related]  

  • 20. Dopamine induces contraction in the proximal, but relaxation in the distal rat isolated small intestine.
    Kirschstein T; Dammann F; Klostermann J; Rehberg M; Tokay T; Schubert R; Köhling R
    Neurosci Lett; 2009 Nov; 465(1):21-6. PubMed ID: 19733212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.