BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9011746)

  • 1. Differential effects of excitatory amino acids on mesencephalic neurons expressing either calretinin or tyrosine hydroxylase in primary cultures.
    Isaacs KR; de Erausquin G; Strauss KI; Jacobowitz DM; Hanbauer I
    Brain Res Mol Brain Res; 1996 Feb; 36(1):114-26. PubMed ID: 9011746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical neurons containing calretinin are selectively resistant to calcium overload and excitotoxicity in vitro.
    Lukas W; Jones KA
    Neuroscience; 1994 Jul; 61(2):307-16. PubMed ID: 7969911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMDA and non-NMDA receptor-mediated excitotoxicity are potentiated in cultured striatal neurons by prior chronic depolarization.
    Chen Q; Surmeier DJ; Reiner A
    Exp Neurol; 1999 Sep; 159(1):283-96. PubMed ID: 10486197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glial cell line-derived neurotrophic factor stimulates the morphological differentiation of cultured ventral mesencephalic calbindin- and calretinin-expressing neurons.
    Widmer HR; Schaller B; Meyer M; Seiler RW
    Exp Neurol; 2000 Jul; 164(1):71-81. PubMed ID: 10877917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calretinin-containing neurons in rat cerebellar granule cell cultures.
    Marini AM; Strauss KI; Jacobowitz DM
    Brain Res Bull; 1997; 42(4):279-88. PubMed ID: 9043714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early exposure of cultured hippocampal neurons to excitatory amino acids protects from later excitotoxicity.
    Friedman LK; Segal M
    Int J Dev Neurosci; 2010 Apr; 28(2):195-205. PubMed ID: 19913087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vulnerability to excitotoxic stimuli of cultured rat hippocampal neurons containing the calcium-binding proteins calretinin and calbindin D28K.
    Möckel V; Fischer G
    Brain Res; 1994 Jun; 648(1):109-20. PubMed ID: 7922513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of decahydroisoquinoline-3-carboxylic acid monohydrate, a novel AMPA receptor antagonist, on glutamate-induced CA2+ responses and neurotoxicity in rat cortical and cerebellar granule neurons.
    Liljequist S; Cebers G; Kalda A
    Biochem Pharmacol; 1995 Nov; 50(11):1761-74. PubMed ID: 8615854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor subunits by calretinin-immunoreactive neurons in the human striatum.
    Cicchetti F; Vinet J; Beach TG; Parent A
    Neuroscience; 1999; 93(1):89-97. PubMed ID: 10430473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping glutamate responses in immunocytochemically identified neurons of the mouse retina.
    Sun D; Kalloniatis M
    J Comp Neurol; 2006 Feb; 494(4):686-703. PubMed ID: 16374798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures.
    Kristensen BW; Noraberg J; Zimmer J
    Brain Res; 2001 Oct; 917(1):21-44. PubMed ID: 11602227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vulnerability to calcium-induced neurotoxicity in cultured neurons expressing calretinin.
    Isaacs KR; Wolpoe ME; Jacobowitz DM
    Exp Neurol; 2000 Jun; 163(2):311-23. PubMed ID: 10833305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axonal expression sites of tyrosine hydroxylase, calretinin- and calbindin-immunoreactivity in striato-pallidal and septal nuclei of the rat brain: a double-immunolabelling study.
    Seifert U; Härtig W; Grosche J; Brückner G; Riedel A; Brauer K
    Brain Res; 1998 Jun; 795(1-2):227-46. PubMed ID: 9622641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitatory amino acid-induced currents in rat septal cholinergic neurons in culture.
    Kumamoto E; Murata Y
    Neuroscience; 1995 Nov; 69(2):477-93. PubMed ID: 8552243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L-glutamate-induced changes in intracellular calcium oscillation frequency through non-classical glutamate receptor binding in cultured rat myocardial cells.
    Winter CR; Baker RC
    Life Sci; 1995; 57(21):1925-34. PubMed ID: 7475942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-culture with the striatum attenuates N-methyl-D-aspartate cytotoxicity in dopaminergic neurons of rat mesencephalic slice cultures.
    Maeda T; Ibi M; Shimazu S; Akaike A
    Jpn J Pharmacol; 1998 Jun; 77(2):161-7. PubMed ID: 9681573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between NMDA receptor expression and MPP+ toxicity in cultured dopaminergic cells.
    Church WH; Hewett SJ
    J Neurosci Res; 2003 Sep; 73(6):811-7. PubMed ID: 12949907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurotensin enhances glutamate excitotoxicity in mesencephalic neurons in primary culture.
    Antonelli T; Tomasini MC; Finetti S; Giardino L; Calzà L; Fuxe K; Soubriè P; Tanganelli S; Ferraro L
    J Neurosci Res; 2002 Dec; 70(6):766-73. PubMed ID: 12444598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that the early loss of membrane protein kinase C is a necessary step in the excitatory amino acid-induced death of primary cortical neurons.
    Durkin JP; Tremblay R; Chakravarthy B; Mealing G; Morley P; Small D; Song D
    J Neurochem; 1997 Apr; 68(4):1400-12. PubMed ID: 9084410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamate neurotoxicity in mesencephalic dopaminergic neurons in culture.
    Kikuchi S; Kim SU
    J Neurosci Res; 1993 Dec; 36(5):558-69. PubMed ID: 7908339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.