These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 9012466)
1. Evidence that mobile lipids detected in rat brain glioma by 1H nuclear magnetic resonance correspond to lipid droplets. Rémy C; Fouilhé N; Barba I; Sam-Laï E; Lahrech H; Cucurella MG; Izquierdo M; Moreno A; Ziegler A; Massarelli R; Décorps M; Arús C Cancer Res; 1997 Feb; 57(3):407-14. PubMed ID: 9012466 [TBL] [Abstract][Full Text] [Related]
2. The relationship between nuclear magnetic resonance-visible lipids, lipid droplets, and cell proliferation in cultured C6 cells. Barba I; Cabañas ME; Arús C Cancer Res; 1999 Apr; 59(8):1861-8. PubMed ID: 10213493 [TBL] [Abstract][Full Text] [Related]
3. Correlation between the occurrence of 1H-MRS lipid signal, necrosis and lipid droplets during C6 rat glioma development. Zoula S; Hérigault G; Ziegler A; Farion R; Décorps M; Rémy C NMR Biomed; 2003 Jun; 16(4):199-212. PubMed ID: 14558118 [TBL] [Abstract][Full Text] [Related]
4. An investigation of human brain tumour lipids by high-resolution magic angle spinning 1H MRS and histological analysis. Opstad KS; Bell BA; Griffiths JR; Howe FA NMR Biomed; 2008 Aug; 21(7):677-85. PubMed ID: 18186027 [TBL] [Abstract][Full Text] [Related]
5. [Study by NMR of the modifications of brain lipid composition related to the tumor processes]. Debouzy JC; Fauvelle F; Fouilhe N; Sam-Lai E; Nemoz C; Girault L; Mazet L Ann Pharm Fr; 1997; 55(1):35-41. PubMed ID: 9138319 [TBL] [Abstract][Full Text] [Related]
7. Magnetic resonance spectroscopy and fluorescence microscopy to investigate mobile lipids in sensitive, resistant and reverting K562 cells and their membranes. Le Moyec L; Kawakami M; Leray G; Larue V; Briane D; Hantz E; De Certaines J Anticancer Res; 2000; 20(6B):4513-8. PubMed ID: 11205297 [TBL] [Abstract][Full Text] [Related]
8. In vivo measurement of the size of lipid droplets in an intracerebral glioma in the rat. Lahrech H; Zoula S; Farion R; Rémy C; Décorps M Magn Reson Med; 2001 Mar; 45(3):409-14. PubMed ID: 11241697 [TBL] [Abstract][Full Text] [Related]
9. Nuclear magnetic resonance-visible lipids induced by cationic lipophilic chemotherapeutic agents are accompanied by increased lipid droplet formation and damaged mitochondria. Delikatny EJ; Cooper WA; Brammah S; Sathasivam N; Rideout DC Cancer Res; 2002 Mar; 62(5):1394-400. PubMed ID: 11888911 [TBL] [Abstract][Full Text] [Related]
10. Lipid signals detected by NMR proton spectroscopy of whole cells are not correlated to lipid droplets evidenced by the Nile red staining. Le Moyec L; Millot G; Tatoud R; Calvo F; Eugène M Cell Mol Biol (Noisy-le-grand); 1997 Jul; 43(5):703-9. PubMed ID: 9298592 [TBL] [Abstract][Full Text] [Related]
11. High glycolytic activity in rat glioma demonstrated in vivo by correlation peak 1H magnetic resonance imaging. Ziegler A; von Kienlin M; Décorps M; Rémy C Cancer Res; 2001 Jul; 61(14):5595-600. PubMed ID: 11454713 [TBL] [Abstract][Full Text] [Related]
12. Measurement by nuclear magnetic resonance diffusion of the dimensions of the mobile lipid compartment in C6 cells. Pérez Y; Lahrech H; Cabañas ME; Barnadas R; Sabés M; Rémy C; Arús C Cancer Res; 2002 Oct; 62(20):5672-7. PubMed ID: 12384523 [TBL] [Abstract][Full Text] [Related]
13. Quantitative 1H nuclear magnetic resonance diffusion spectroscopy of BT4C rat glioma during thymidine kinase-mediated gene therapy in vivo: identification of apoptotic response. Hakumäki JM; Poptani H; Puumalainen AM; Loimas S; Paljärvi LA; Ylä-Herttuala S; Kauppinen RA Cancer Res; 1998 Sep; 58(17):3791-9. PubMed ID: 9731486 [TBL] [Abstract][Full Text] [Related]
14. Cyclocreatine accumulation leads to cellular swelling in C6 glioma multicellular spheroids: diffusion and one-dimensional chemical shift nuclear magnetic resonance microscopy. Schiffenbauer YS; Tempel C; Abramovitch R; Meir G; Neeman M Cancer Res; 1995 Jan; 55(1):153-8. PubMed ID: 7805026 [TBL] [Abstract][Full Text] [Related]
15. Characterization of lipids from human brain tissues by multinuclear magnetic resonance spectroscopy. Tugnoli V; Tosi MR; Tinti A; Trinchero A; Bottura G; Fini G Biopolymers; 2001; 62(6):297-306. PubMed ID: 11857268 [TBL] [Abstract][Full Text] [Related]
16. In vivo proton MR spectroscopy: the diagnostic possibilities of lipid resonances in brain tumors. Gotsis ED; Fountas K; Kapsalaki E; Toulas P; Peristeris G; Papadakis N Anticancer Res; 1996; 16(3B):1565-7. PubMed ID: 8694527 [TBL] [Abstract][Full Text] [Related]
17. Lactate turnover in rat glioma measured by in vivo nuclear magnetic resonance spectroscopy. Terpstra M; Gruetter R; High WB; Mescher M; DelaBarre L; Merkle H; Garwood M Cancer Res; 1998 Nov; 58(22):5083-8. PubMed ID: 9823316 [TBL] [Abstract][Full Text] [Related]
18. Detection of intracellular lactate with localized diffusion {1H-13C}-spectroscopy in rat glioma in vivo. Pfeuffer J; Lin JC; Delabarre L; Ugurbil K; Garwood M J Magn Reson; 2005 Nov; 177(1):129-38. PubMed ID: 16111904 [TBL] [Abstract][Full Text] [Related]
19. Ultra-short echo time spectroscopic imaging in rats: implications for monitoring lipids in glioma gene therapy. Liimatainen T; Hakumäki J; Tkác I; Gröhn O NMR Biomed; 2006 Aug; 19(5):554-9. PubMed ID: 16523527 [TBL] [Abstract][Full Text] [Related]
20. Separation and quantification of lactate and lipid at 1.3 ppm by diffusion-weighted magnetic resonance spectroscopy. Wang AM; Leung GK; Kiang KM; Chan D; Cao P; Wu EX Magn Reson Med; 2017 Feb; 77(2):480-489. PubMed ID: 26833380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]