These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 9012493)

  • 1. An indelible lineage marker for Xenopus using a mutated green fluorescent protein.
    Zernicka-Goetz M; Pines J; Ryan K; Siemering KR; Haseloff J; Evans MJ; Gurdon JB
    Development; 1996 Dec; 122(12):3719-24. PubMed ID: 9012493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melanophore lineage and clonal organization of the epidermis in Xenopus embryos as revealed by expression of a biogenic marker, GFP.
    Fukuzawa T
    Pigment Cell Res; 2000 Jun; 13(3):151-7. PubMed ID: 10885673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of XMyoD or XMyf5 in Xenopus embryos induces the formation of enlarged myotomes through recruitment of cells of nonsomitic lineage.
    Ludolph DC; Neff AW; Mescher AL; Malacinski GM; Parker MA; Smith RC
    Dev Biol; 1994 Nov; 166(1):18-33. PubMed ID: 7525388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xenopus embryos activates maternal program of apoptosis as a "fail-safe" mechanism of early embryogenesis.
    Kai M; Kaito C; Fukamachi H; Higo T; Takayama E; Hara H; Ohya Y; Igarashi K; Shiokawa K
    Cell Res; 2003 Jun; 13(3):147-58. PubMed ID: 12862315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A two-step model for the fate determination of presumptive endodermal blastomeres in Xenopus embryos.
    Yasuo H; Lemaire P
    Curr Biol; 1999 Aug; 9(16):869-79. PubMed ID: 10469589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two phases of Hox gene regulation during early Xenopus development.
    Pownall ME; Isaacs HV; Slack JM
    Curr Biol; 1998 May; 8(11):673-6. PubMed ID: 9635197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primitive and definitive blood share a common origin in Xenopus: a comparison of lineage techniques used to construct fate maps.
    Lane MC; Sheets MD
    Dev Biol; 2002 Aug; 248(1):52-67. PubMed ID: 12142020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xenopus cadherin-11 restrains cranial neural crest migration and influences neural crest specification.
    Borchers A; David R; Wedlich D
    Development; 2001 Aug; 128(16):3049-60. PubMed ID: 11688555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inositol-requiring enzyme 1α is required for gut development in Xenopus lavies embryos.
    Guo J; Li XX; Feng JJ; Yin CY; Wang XJ; Wang N; Yuan L
    World J Gastroenterol; 2013 Jan; 19(2):227-34. PubMed ID: 23345945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inducible control of tissue-specific transgene expression in Xenopus tropicalis transgenic lines.
    Chae J; Zimmerman LB; Grainger RM
    Mech Dev; 2002 Sep; 117(1-2):235-41. PubMed ID: 12204263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lef/Tcf-dependent Wnt/beta-catenin signaling during Xenopus axis specification.
    Geng X; Xiao L; Lin GF; Hu R; Wang JH; Rupp RA; Ding X
    FEBS Lett; 2003 Jul; 547(1-3):1-6. PubMed ID: 12860376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FLP and Cre recombinase function in Xenopus embryos.
    Werdien D; Peiler G; Ryffel GU
    Nucleic Acids Res; 2001 Jun; 29(11):E53-3. PubMed ID: 11376165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double-stranded RNA injection produces null phenotypes in zebrafish.
    Li YX; Farrell MJ; Liu R; Mohanty N; Kirby ML
    Dev Biol; 2000 Jan; 217(2):394-405. PubMed ID: 10625563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tagging muscle cell lineages in development and tail regeneration using Cre recombinase in transgenic Xenopus.
    Ryffel GU; Werdien D; Turan G; Gerhards A; Goosses S; Senkel S
    Nucleic Acids Res; 2003 Apr; 31(8):e44. PubMed ID: 12682379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blastomere derivation and domains of gene expression in the Spemann Organizer of Xenopus laevis.
    Vodicka MA; Gerhart JC
    Development; 1995 Nov; 121(11):3505-18. PubMed ID: 8582265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pre-MBT patterning of early gene regulation in Xenopus: the role of the cortical rotation and mesoderm induction.
    Ding X; Hausen P; Steinbeisser H
    Mech Dev; 1998 Jan; 70(1-2):15-24. PubMed ID: 9510021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partially compromised specification causes stochastic effects on gut development in C. elegans.
    Choi H; Broitman-Maduro G; Maduro MF
    Dev Biol; 2017 Jul; 427(1):49-60. PubMed ID: 28502614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Xenopus T-box gene, Antipodean, encodes a vegetally localised maternal mRNA and can trigger mesoderm formation.
    Stennard F; Carnac G; Gurdon JB
    Development; 1996 Dec; 122(12):4179-88. PubMed ID: 9012537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Following cell fate in the living mouse embryo.
    Zernicka-Goetz M; Pines J; McLean Hunter S; Dixon JP; Siemering KR; Haseloff J; Evans MJ
    Development; 1997 Mar; 124(6):1133-7. PubMed ID: 9102300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Animal-vegetal asymmetries influence the earliest steps in retina fate commitment in Xenopus.
    Moore KB; Moody SA
    Dev Biol; 1999 Aug; 212(1):25-41. PubMed ID: 10419683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.