BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 9012750)

  • 1. Cytoskeletal mechanics in pressure-overload cardiac hypertrophy.
    Tagawa H; Wang N; Narishige T; Ingber DE; Zile MR; Cooper G
    Circ Res; 1997 Feb; 80(2):281-9. PubMed ID: 9012750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of pressure- or volume-overload hypertrophy on passive stiffness in isolated adult cardiac muscle cells.
    Kato S; Koide M; Cooper G; Zile MR
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2575-83. PubMed ID: 8997318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular versus myocardial basis for the contractile dysfunction of hypertrophied myocardium.
    Mann DL; Urabe Y; Kent RL; Vinciguerra S; Cooper G
    Circ Res; 1991 Feb; 68(2):402-15. PubMed ID: 1825035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading.
    Tagawa H; Koide M; Sato H; Zile MR; Carabello BA; Cooper G
    Circ Res; 1998 Apr; 82(7):751-61. PubMed ID: 9562434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytoskeletal role in the contractile dysfunction of cardiocytes from hypertrophied and failing right ventricular myocardium.
    Tagawa H; Koide M; Sato H; Cooper G
    Proc Assoc Am Physicians; 1996 May; 108(3):218-29. PubMed ID: 8774055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiocyte contractile performance in experimental biventricular volume-overload hypertrophy.
    Urabe Y; Hamada Y; Spinale FG; Carabello BA; Kent RL; Cooper G; Mann DL
    Am J Physiol; 1993 May; 264(5 Pt 2):H1615-23. PubMed ID: 8498574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of microtubules in contractile dysfunction of hypertrophied cardiocytes.
    Tsutsui H; Tagawa H; Kent RL; McCollam PL; Ishihara K; Nagatsu M; Cooper G
    Circulation; 1994 Jul; 90(1):533-55. PubMed ID: 8026043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basis for increased microtubules in pressure-hypertrophied cardiocytes.
    Tagawa H; Rozich JD; Tsutsui H; Narishige T; Kuppuswamy D; Sato H; McDermott PJ; Koide M; Cooper G
    Circulation; 1996 Mar; 93(6):1230-43. PubMed ID: 8653846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of microtubules in the contractile dysfunction of hypertrophied myocardium.
    Zile MR; Koide M; Sato H; Ishiguro Y; Conrad CH; Buckley JM; Morgan JP; Cooper G
    J Am Coll Cardiol; 1999 Jan; 33(1):250-60. PubMed ID: 9935038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constitutive properties of hypertrophied myocardium: cellular contribution to changes in myocardial stiffness.
    Harris TS; Baicu CF; Conrad CH; Koide M; Buckley JM; Barnes M; Cooper G; Zile MR
    Am J Physiol Heart Circ Physiol; 2002 Jun; 282(6):H2173-82. PubMed ID: 12003826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microtubule depolymerization normalizes in vivo myocardial contractile function in dogs with pressure-overload left ventricular hypertrophy.
    Koide M; Hamawaki M; Narishige T; Sato H; Nemoto S; DeFreyte G; Zile MR; Cooper G IV; Carabello BA
    Circulation; 2000 Aug; 102(9):1045-52. PubMed ID: 10961971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutive properties of adult mammalian cardiac muscle cells.
    Zile MR; Richardson K; Cowles MK; Buckley JM; Koide M; Cowles BA; Gharpuray V; Cooper G
    Circulation; 1998 Aug; 98(6):567-79. PubMed ID: 9714115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural analysis of pressure versus volume overload hypertrophy of cat right ventricle.
    Marino TA; Kent RL; Uboh CE; Fernandez E; Thompson EW; Cooper G
    Am J Physiol; 1985 Aug; 249(2 Pt 2):H371-9. PubMed ID: 3161346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microtubule stabilization in pressure overload cardiac hypertrophy.
    Sato H; Nagai T; Kuppuswamy D; Narishige T; Koide M; Menick DR; Cooper G
    J Cell Biol; 1997 Nov; 139(4):963-73. PubMed ID: 9362514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiocyte cytoskeleton in patients with left ventricular pressure overload hypertrophy.
    Zile MR; Green GR; Schuyler GT; Aurigemma GP; Miller DC; Cooper G
    J Am Coll Cardiol; 2001 Mar; 37(4):1080-4. PubMed ID: 11263612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A direct test of the hypothesis that increased microtubule network density contributes to contractile dysfunction of the hypertrophied heart.
    Cheng G; Zile MR; Takahashi M; Baicu CF; Bonnema DD; Cabral F; Menick DR; Cooper G
    Am J Physiol Heart Circ Physiol; 2008 May; 294(5):H2231-41. PubMed ID: 18344371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific microtubule-associated protein 4 dephosphorylation causes microtubule network densification in pressure overload cardiac hypertrophy.
    Chinnakkannu P; Samanna V; Cheng G; Ablonczy Z; Baicu CF; Bethard JR; Menick DR; Kuppuswamy D; Cooper G
    J Biol Chem; 2010 Jul; 285(28):21837-48. PubMed ID: 20436166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversibility of the structural effects of pressure overload hypertrophy of cat right ventricular myocardium.
    Marino TA; Brody E; Lauva IK; Kent RL; Cooper G
    Anat Rec; 1986 Feb; 214(2):141-7. PubMed ID: 2937350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiocyte cytoskeleton in hypertrophied myocardium.
    Cooper G
    Heart Fail Rev; 2000 Oct; 5(3):187-201. PubMed ID: 16228904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytoskeletal role in the contractile dysfunction of hypertrophied myocardium.
    Tsutsui H; Ishihara K; Cooper G
    Science; 1993 Apr; 260(5108):682-7. PubMed ID: 8097594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.