BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 9012751)

  • 21. Functional genomics of chicken, mouse, and human titin supports splice diversity as an important mechanism for regulating biomechanics of striated muscle.
    Granzier H; Radke M; Royal J; Wu Y; Irving TC; Gotthardt M; Labeit S
    Am J Physiol Regul Integr Comp Physiol; 2007 Aug; 293(2):R557-67. PubMed ID: 17522126
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Titin organisation and the 3D architecture of the vertebrate-striated muscle I-band.
    Knupp C; Luther PK; Squire JM
    J Mol Biol; 2002 Sep; 322(4):731-9. PubMed ID: 12270710
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Species variations in cDNA sequence and exon splicing patterns in the extensible I-band region of cardiac titin: relation to passive tension.
    Greaser ML; Berri M; Warren CM; Mozdziak PE
    J Muscle Res Cell Motil; 2002; 23(5-6):473-82. PubMed ID: 12785098
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction.
    Granzier H; Kellermayer M; Helmes M; Trombitás K
    Biophys J; 1997 Oct; 73(4):2043-53. PubMed ID: 9336199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional properties of the titin/connectin-associated proteins, the muscle-specific RING finger proteins (MURFs), in striated muscle.
    Gregorio CC; Perry CN; McElhinny AS
    J Muscle Res Cell Motil; 2005; 26(6-8):389-400. PubMed ID: 16477476
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extensibility in the titin molecule and its relation to muscle elasticity.
    Tskhovrebova L; Trinick J
    Adv Exp Med Biol; 2000; 481():163-73; discussion 174-8. PubMed ID: 10987072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanically driven contour-length adjustment in rat cardiac titin's unique N2B sequence: titin is an adjustable spring.
    Helmes M; Trombitás K; Centner T; Kellermayer M; Labeit S; Linke WA; Granzier H
    Circ Res; 1999 Jun; 84(11):1339-52. PubMed ID: 10364572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Titin Gene and Protein Functions in Passive and Active Muscle.
    Linke WA
    Annu Rev Physiol; 2018 Feb; 80():389-411. PubMed ID: 29131758
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Translocation of molecular chaperones to the titin springs is common in skeletal myopathy patients and affects sarcomere function.
    Unger A; Beckendorf L; Böhme P; Kley R; von Frieling-Salewsky M; Lochmüller H; Schröder R; Fürst DO; Vorgerd M; Linke WA
    Acta Neuropathol Commun; 2017 Sep; 5(1):72. PubMed ID: 28915917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extensibility of isoforms of cardiac titin: variation in contour length of molecular subsegments provides a basis for cellular passive stiffness diversity.
    Trombitás K; Redkar A; Centner T; Wu Y; Labeit S; Granzier H
    Biophys J; 2000 Dec; 79(6):3226-34. PubMed ID: 11106626
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterizing titin's I-band Ig domain region as an entropic spring.
    Linke WA; Stockmeier MR; Ivemeyer M; Hosser H; Mundel P
    J Cell Sci; 1998 Jun; 111 ( Pt 11)():1567-74. PubMed ID: 9580564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Muscle-specific RING finger-1 interacts with titin to regulate sarcomeric M-line and thick filament structure and may have nuclear functions via its interaction with glucocorticoid modulatory element binding protein-1.
    McElhinny AS; Kakinuma K; Sorimachi H; Labeit S; Gregorio CC
    J Cell Biol; 2002 Apr; 157(1):125-36. PubMed ID: 11927605
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Partial sequence of connectin-like 1200K-protein in obliquely striated muscle of a polychaete (Annelida): evidence for structural diversity from vertebrate and invertebrate connectins.
    Izawa N; Fukuzawa A; Kanzawa N; Kawamura Y; Maruyama K; Kimura S
    J Muscle Res Cell Motil; 2005; 26(6-8):487-94. PubMed ID: 16470335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fishing out proteins that bind to titin.
    Sanger JW; Sanger JM
    J Cell Biol; 2001 Jul; 154(1):21-4. PubMed ID: 11448986
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for a direct but sequential binding of titin to tropomyosin and actin filaments.
    Raynaud F; Astier C; Benyamin Y
    Biochim Biophys Acta; 2004 Aug; 1700(2):171-8. PubMed ID: 15262226
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nature of PEVK-titin elasticity in skeletal muscle.
    Linke WA; Ivemeyer M; Mundel P; Stockmeier MR; Kolmerer B
    Proc Natl Acad Sci U S A; 1998 Jul; 95(14):8052-7. PubMed ID: 9653138
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polyproline II helix is a key structural motif of the elastic PEVK segment of titin.
    Ma K; Kan L; Wang K
    Biochemistry; 2001 Mar; 40(12):3427-38. PubMed ID: 11297408
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity.
    Improta S; Politou AS; Pastore A
    Structure; 1996 Mar; 4(3):323-37. PubMed ID: 8805538
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular characterization of avian muscle titin.
    Tan KO; Sater GR; Myers AM; Robson RM; Huiatt TW
    J Biol Chem; 1993 Oct; 268(30):22900-7. PubMed ID: 8226799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein kinase-A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension.
    Krüger M; Linke WA
    J Muscle Res Cell Motil; 2006; 27(5-7):435-44. PubMed ID: 16897574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.