BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 9012804)

  • 1. Major proteinase movement upon stable serpin-proteinase complex formation.
    Stratikos E; Gettins PG
    Proc Natl Acad Sci U S A; 1997 Jan; 94(2):453-8. PubMed ID: 9012804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of a noncovalent serpin-proteinase complex involves no conformational change in the serpin. Use of 1H-15N HSQC NMR as a sensitive nonperturbing monitor of conformation.
    Peterson FC; Gordon NC; Gettins PG
    Biochemistry; 2000 Oct; 39(39):11884-92. PubMed ID: 11009600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of the covalent serpin-proteinase complex involves translocation of the proteinase by more than 70 A and full insertion of the reactive center loop into beta-sheet A.
    Stratikos E; Gettins PG
    Proc Natl Acad Sci U S A; 1999 Apr; 96(9):4808-13. PubMed ID: 10220375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the serpin-proteinase complex using single cysteine variants of alpha1-proteinase inhibitor Pittsburgh.
    Stratikos E; Gettins PG
    J Biol Chem; 1998 Jun; 273(25):15582-9. PubMed ID: 9624149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into the mechanism of serpin-proteinase inhibition from 2D [1H-15N] NMR studies of the 69 kDa alpha 1-proteinase inhibitor Pittsburgh-trypsin covalent complex.
    Peterson FC; Gettins PG
    Biochemistry; 2001 May; 40(21):6284-92. PubMed ID: 11371190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolution of Michaelis complex, acylation, and conformational change steps in the reactions of the serpin, plasminogen activator inhibitor-1, with tissue plasminogen activator and trypsin.
    Olson ST; Swanson R; Day D; Verhamme I; Kvassman J; Shore JD
    Biochemistry; 2001 Oct; 40(39):11742-56. PubMed ID: 11570875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. alpha1-Proteinase inhibitor forms initial non-covalent and final covalent complexes with elastase analogously to other serpin-proteinase pairs, suggesting a common mechanism of inhibition.
    Dobó J; Gettins PG
    J Biol Chem; 2004 Mar; 279(10):9264-9. PubMed ID: 14593107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of fluorescence resonance energy transfer to study serpin-proteinase interactions.
    Gettins PG; Olson ST
    Methods; 2004 Feb; 32(2):110-9. PubMed ID: 14698623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Change in environment of the P1 side chain upon progression from the Michaelis complex to the covalent serpin-proteinase complex.
    Futamura A; Stratikos E; Olson ST; Gettins PG
    Biochemistry; 1998 Sep; 37(38):13110-9. PubMed ID: 9748317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of a serpin-enzyme complex probed by cysteine substitutions and fluorescence spectroscopy.
    Ludeman JP; Whisstock JC; Hopkins PC; Le Bonniec BF; Bottomley SP
    Biophys J; 2001 Jan; 80(1):491-7. PubMed ID: 11159419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic intermediates en route to the final serpin-protease complex: studies of complexes of α1-protease inhibitor with trypsin.
    Maddur AA; Swanson R; Izaguirre G; Gettins PG; Olson ST
    J Biol Chem; 2013 Nov; 288(44):32020-35. PubMed ID: 24047901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the catalytic serine in the interactions of serine proteinases with protein inhibitors of the serpin family. Contribution of a covalent interaction to the binding energy of serpin-proteinase complexes.
    Olson ST; Bock PE; Kvassman J; Shore JD; Lawrence DA; Ginsburg D; Björk I
    J Biol Chem; 1995 Dec; 270(50):30007-17. PubMed ID: 8530403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational distributions of protease-serpin complexes: a partially translocated complex.
    Liu L; Mushero N; Hedstrom L; Gershenson A
    Biochemistry; 2006 Sep; 45(36):10865-72. PubMed ID: 16953572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-lived protease serpin complexes: partial disruption of the rat trypsin active site.
    Liu L; Mushero N; Hedstrom L; Gershenson A
    Protein Sci; 2007 Nov; 16(11):2403-11. PubMed ID: 17962402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative trajectories of active and S195A inactive trypsin upon binding to serpins.
    Mellet P; Mély Y; Hedstrom L; Cahoon M; Belorgey D; Srividya N; Rubin H; Bieth JG
    J Biol Chem; 2002 Oct; 277(41):38901-14. PubMed ID: 12077135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The P6-P2 region of serpins is critical for proteinase inhibition and complex stability.
    Chaillan-Huntington CE; Gettins PG; Huntington JA; Patston PA
    Biochemistry; 1997 Aug; 36(31):9562-70. PubMed ID: 9236002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Canonical inhibitor-like interactions explain reactivity of alpha1-proteinase inhibitor Pittsburgh and antithrombin with proteinases.
    Dementiev A; Simonovic M; Volz K; Gettins PG
    J Biol Chem; 2003 Sep; 278(39):37881-7. PubMed ID: 12860985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of serpin-protease complexes: antithrombin-thrombin, alpha 1-antitrypsin (358Met-->Arg)-thrombin, alpha 1-antitrypsin (358Met-->Arg)-trypsin, and antitrypsin-elastase.
    Whisstock J; Lesk AM; Carrell R
    Proteins; 1996 Nov; 26(3):288-303. PubMed ID: 8953650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic fluorescence changes and rapid kinetics of proteinase deformation during serpin inhibition.
    Tew DJ; Bottomley SP
    FEBS Lett; 2001 Apr; 494(1-2):30-3. PubMed ID: 11297729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pH dependence of serpin-proteinase complex dissociation reveals a mechanism of complex stabilization involving inactive and active conformational states of the proteinase which are perturbable by calcium.
    Calugaru SV; Swanson R; Olson ST
    J Biol Chem; 2001 Aug; 276(35):32446-55. PubMed ID: 11404362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.