BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 9013136)

  • 1. Production of hydroxyl radical in the hippocampus after CO hypoxia or hypoxic hypoxia in the rat.
    Piantadosi CA; Zhang J; Demchenko IT
    Free Radic Biol Med; 1997; 22(4):725-32. PubMed ID: 9013136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxyl radical production in the brain after CO hypoxia in rats.
    Piantadosi CA; Tatro L; Zhang J
    Free Radic Biol Med; 1995 Mar; 18(3):603-9. PubMed ID: 9101254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain temperature alters hydroxyl radical production during cerebral ischemia/reperfusion in rats.
    Kil HY; Zhang J; Piantadosi CA
    J Cereb Blood Flow Metab; 1996 Jan; 16(1):100-6. PubMed ID: 8530542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prolonged production of hydroxyl radical in rat hippocampus after brain ischemia-reperfusion is decreased by 21-aminosteroids.
    Zhang J; Piantadosi CA
    Neurosci Lett; 1994 Aug; 177(1-2):127-30. PubMed ID: 7824163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Existence of a threshold for hydroxyl radical generation independent of hypoxia in rat striatum during carbon monoxide poisoning.
    Hara S; Mizukami H; Kurosaki K; Kuriiwa F; Mukai T
    Arch Toxicol; 2011 Sep; 85(9):1091-9. PubMed ID: 21221954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial generation of reactive oxygen species after brain ischemia in the rat.
    Piantadosi CA; Zhang J
    Stroke; 1996 Feb; 27(2):327-31; discussion 332. PubMed ID: 8571432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual contradictory roles of cAMP signaling pathways in hydroxyl radical production in the rat striatum.
    Hara S; Kobayashi M; Kuriiwa F; Mukai T; Mizukami H
    Free Radic Biol Med; 2012 Mar; 52(6):1086-92. PubMed ID: 22269608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyl radical production in the substantia nigra after 6-hydroxydopamine and hypoxia-reoxygenation.
    Dajas-Bailador FA; Martinez-Borges A; Costa G; Abin JA; Martignoni E; Nappi G; Dajas F
    Brain Res; 1998 Nov; 813(1):18-25. PubMed ID: 9824659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of hydroxyl radical generation in the striatum of free-moving rats due to carbon monoxide poisoning, as determined by in vivo microdialysis.
    Hara S; Mukai T; Kurosaki K; Kuriiwa F; Endo T
    Brain Res; 2004 Aug; 1016(2):281-4. PubMed ID: 15246866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial oxidative stress after carbon monoxide hypoxia in the rat brain.
    Zhang J; Piantadosi CA
    J Clin Invest; 1992 Oct; 90(4):1193-9. PubMed ID: 1328293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of salicylate hydroxylation to detect hydroxyl radical generation in ischemic and traumatic brain injury. Reversal by tirilazad mesylate (U-74006F).
    Althaus JS; Andrus PK; Williams CM; VonVoigtlander PF; Cazers AR; Hall ED
    Mol Chem Neuropathol; 1993 Oct; 20(2):147-62. PubMed ID: 8297419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apoptosis and delayed neuronal damage after carbon monoxide poisoning in the rat.
    Piantadosi CA; Zhang J; Levin ED; Folz RJ; Schmechel DE
    Exp Neurol; 1997 Sep; 147(1):103-14. PubMed ID: 9294407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated extracellular glutamate levels increased the formation of hydroxyl radical in the striatum of anesthetized rat.
    Yang CS; Tsai PJ; Lin NN; Liu L; Kuo JS
    Free Radic Biol Med; 1995 Oct; 19(4):453-9. PubMed ID: 7590394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxyl radical production and lung injury in the rat following silica or titanium dioxide instillation in vivo.
    Schapira RM; Ghio AJ; Effros RM; Morrisey J; Almagro UA; Dawson CA; Hacker AD
    Am J Respir Cell Mol Biol; 1995 Feb; 12(2):220-6. PubMed ID: 7865220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating hydroxyl radical content in rat brain using systemic and intraventricular salicylate: impact of methamphetamine.
    Giovanni A; Liang LP; Hastings TG; Zigmond MJ
    J Neurochem; 1995 Apr; 64(4):1819-25. PubMed ID: 7891110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of hydroxyl free radical generation by calcium overload in rat myocardium.
    Obata T; Tamura M; Yamanaka Y
    J Pharm Pharmacol; 1997 Aug; 49(8):787-90. PubMed ID: 9379357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-DOPA does not enhance hydroxyl radical formation in the nigrostriatal dopamine system of rats with a unilateral 6-hydroxydopamine lesion.
    Camp DM; Loeffler DA; LeWitt PA
    J Neurochem; 2000 Mar; 74(3):1229-40. PubMed ID: 10693956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of reactive oxygen species following acute ethanol or acetaldehyde and its reduction by acamprosate in chronically alcoholized rats.
    Dahchour A; Lallemand F; Ward RJ; De Witte P
    Eur J Pharmacol; 2005 Sep; 520(1-3):51-8. PubMed ID: 16135364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxylation of aromatic compounds as indices of hydroxyl radical production: a cautionary note revisited.
    Montgomery J; Ste-Marie L; Boismenu D; Vachon L
    Free Radic Biol Med; 1995 Dec; 19(6):927-33. PubMed ID: 8582670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myocardial microdialysis of salicylic acid to detect hydroxyl radical generation during ischemia.
    Obata T; Hosokawa H; Soeda T; Karashima K; Uchida Y; Yamanaka Y
    Comp Biochem Physiol B Biochem Mol Biol; 1995 Jan; 110(1):277-83. PubMed ID: 7858947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.