These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 9014839)

  • 1. Effects of adrenal steroids on the concentration of Na(+)-K+ pumps in rat skeletal muscle.
    Dørup I; Clausen T
    J Endocrinol; 1997 Jan; 152(1):49-57. PubMed ID: 9014839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of K+, Mg2+ deficiency and adrenal steroids on Na+, K(+)-pump concentration in skeletal muscle.
    Dørup I
    Acta Physiol Scand; 1996 Mar; 156(3):305-11. PubMed ID: 8729691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of electrical stimulation and insulin on Na+-K+-ATPase ([3H]ouabain binding) in rat skeletal muscle.
    McKenna MJ; Gissel H; Clausen T
    J Physiol; 2003 Mar; 547(Pt 2):567-80. PubMed ID: 12562912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of semi-starvation and potassium deficiency on the concentration of [3H]ouabain-binding sites and sodium and potassium contents in rat skeletal muscle.
    Kjeldsen K; Everts ME; Clausen T
    Br J Nutr; 1986 Nov; 56(3):519-32. PubMed ID: 3676228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of exercise-induced Na+-K+ exchange in rat skeletal muscle in vivo.
    Murphy KT; Nielsen OB; Clausen T
    Exp Physiol; 2008 Dec; 93(12):1249-62. PubMed ID: 18586859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucocorticoids increase sodium pump alpha(2)- and beta(1)-subunit abundance and mRNA in rat skeletal muscle.
    Thompson CB; Dorup I; Ahn J; Leong PK; McDonough AA
    Am J Physiol Cell Physiol; 2001 Mar; 280(3):C509-16. PubMed ID: 11171570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnesium, sodium, and potassium content and [3H]ouabain binding capacity of skeletal muscle in relatives of patients with type 2 diabetes: effect of dexamethasone.
    Djurhuus MS; Henriksen JE; Klitgaard NA
    Metabolism; 2002 Oct; 51(10):1331-9. PubMed ID: 12370855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of thyroid hormones on 3H-ouabain binding site concentration, Na,K-contents and 86Rb-efflux in rat skeletal muscle.
    Kjeldsen K; Everts ME; Clausen T
    Pflugers Arch; 1986 May; 406(5):529-35. PubMed ID: 3714451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of renal sodium-potassium-adenosine triphosphatase by aldosterone. Effect of high physiologic levels on enzyme activity in isolated rat and rabbit tubules.
    Mujais SK; Chekal MA; Jones WJ; Hayslett JP; Katz AI
    J Clin Invest; 1985 Jul; 76(1):170-6. PubMed ID: 2991336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium depletion increases potassium clearance capacity in skeletal muscles in vivo during acute repletion.
    Bundgaard H; Kjeldsen K
    Am J Physiol Cell Physiol; 2002 Oct; 283(4):C1163-70. PubMed ID: 12225980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of magnesium depletion on 3H-ouabain binding site concentration in rat skeletal muscle.
    Kjeldsen K; Nørgaard A
    Magnesium; 1987; 6(1):55-60. PubMed ID: 3029517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. K+ supplementation increases muscle [Na+-K+-ATPase] and improves extrarenal K+ homeostasis in rats.
    Bundgaard H; Schmidt TA; Larsen JS; Kjeldsen K
    J Appl Physiol (1985); 1997 Apr; 82(4):1136-44. PubMed ID: 9104850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of both aerobic glycolysis and Na(+)-K(+)-ATPase activity in skeletal muscle by epinephrine or amylin.
    James JH; Wagner KR; King JK; Leffler RE; Upputuri RK; Balasubramaniam A; Friend LA; Shelly DA; Paul RJ; Fischer JE
    Am J Physiol; 1999 Jul; 277(1):E176-86. PubMed ID: 10409142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of rat cerebral cortex Na+,K(+)-ATPase: effect of age and potassium depletion.
    Schmidt TA; Larsen JS; Kjeldsen K
    J Neurochem; 1992 Dec; 59(6):2094-104. PubMed ID: 1331324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The alpha1 isoform of Na+,K+-ATPase in rat soleus and extensor digitorum longus.
    Hansen O
    Acta Physiol Scand; 2001 Nov; 173(3):335-41. PubMed ID: 11736695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of amylin and other peptide hormones on Na+-K+ transport and contractility in rat skeletal muscle.
    Clausen T
    J Physiol; 2000 Aug; 527 Pt 1(Pt 1):121-30. PubMed ID: 10944175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+-K+-ATPase in rat skeletal muscle: content, isoform, and activity characteristics.
    Fowles JR; Green HJ; Ouyang J
    J Appl Physiol (1985); 2004 Jan; 96(1):316-26. PubMed ID: 12882989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The significance of active Na+,K+ transport in the maintenance of contractility in rat skeletal muscle.
    Nielsen OB; Clausen T
    Acta Physiol Scand; 1996 Jun; 157(2):199-209. PubMed ID: 8800360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The concentration of sodium, potassium pumps in chronic obstructive lung disease (COLD) patients: the impact of magnesium depletion and steroid treatment.
    Ravn HB; Dørup I
    J Intern Med; 1997 Jan; 241(1):23-9. PubMed ID: 9042090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of Na,K-ATPase activity in developing rat distal colon: role of corticosteroids.
    Zemanová Z; Pácha J
    Mech Ageing Dev; 1998 Mar; 101(1-2):129-43. PubMed ID: 9593319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.