BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 9015302)

  • 41. A role for Tlg1p in the transport of proteins within the Golgi apparatus of Saccharomyces cerevisiae.
    Coe JG; Lim AC; Xu J; Hong W
    Mol Biol Cell; 1999 Jul; 10(7):2407-23. PubMed ID: 10397773
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phosphatidic Acid Sequesters Sec18p from cis-SNARE Complexes to Inhibit Priming.
    Starr ML; Hurst LR; Fratti RA
    Traffic; 2016 Oct; 17(10):1091-109. PubMed ID: 27364524
    [TBL] [Abstract][Full Text] [Related]  

  • 43. HOPS prevents the disassembly of trans-SNARE complexes by Sec17p/Sec18p during membrane fusion.
    Xu H; Jun Y; Thompson J; Yates J; Wickner W
    EMBO J; 2010 Jun; 29(12):1948-60. PubMed ID: 20473271
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coupled ER to Golgi transport reconstituted with purified cytosolic proteins.
    Barlowe C
    J Cell Biol; 1997 Dec; 139(5):1097-108. PubMed ID: 9382859
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The karyogamy gene KAR2 and novel proteins are required for ER-membrane fusion.
    Latterich M; Schekman R
    Cell; 1994 Jul; 78(1):87-98. PubMed ID: 8033215
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Defining the functions of trans-SNARE pairs.
    Ungermann C; Sato K; Wickner W
    Nature; 1998 Dec; 396(6711):543-8. PubMed ID: 9859990
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vam10p defines a Sec18p-independent step of priming that allows yeast vacuole tethering.
    Kato M; Wickner W
    Proc Natl Acad Sci U S A; 2003 May; 100(11):6398-403. PubMed ID: 12748377
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New component of the vacuolar class C-Vps complex couples nucleotide exchange on the Ypt7 GTPase to SNARE-dependent docking and fusion.
    Wurmser AE; Sato TK; Emr SD
    J Cell Biol; 2000 Oct; 151(3):551-62. PubMed ID: 11062257
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones.
    Mima J; Hickey CM; Xu H; Jun Y; Wickner W
    EMBO J; 2008 Aug; 27(15):2031-42. PubMed ID: 18650938
    [TBL] [Abstract][Full Text] [Related]  

  • 50. HOPS initiates vacuole docking by tethering membranes before trans-SNARE complex assembly.
    Hickey CM; Wickner W
    Mol Biol Cell; 2010 Jul; 21(13):2297-305. PubMed ID: 20462954
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interaction of SNAREs with ArfGAPs precedes recruitment of Sec18p/NSF.
    Schindler C; Spang A
    Mol Biol Cell; 2007 Aug; 18(8):2852-63. PubMed ID: 17522384
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Vacuole acidification is required for trans-SNARE pairing, LMA1 release, and homotypic fusion.
    Ungermann C; Wickner W; Xu Z
    Proc Natl Acad Sci U S A; 1999 Sep; 96(20):11194-9. PubMed ID: 10500153
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Yeast lipin 1 orthologue pah1p regulates vacuole homeostasis and membrane fusion.
    Sasser T; Qiu QS; Karunakaran S; Padolina M; Reyes A; Flood B; Smith S; Gonzales C; Fratti RA
    J Biol Chem; 2012 Jan; 287(3):2221-36. PubMed ID: 22121197
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Vam7p, a SNAP-25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking.
    Sato TK; Darsow T; Emr SD
    Mol Cell Biol; 1998 Sep; 18(9):5308-19. PubMed ID: 9710615
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage.
    Wang CW; Stromhaug PE; Kauffman EJ; Weisman LS; Klionsky DJ
    J Cell Biol; 2003 Dec; 163(5):973-85. PubMed ID: 14662743
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Trans-SNARE complex assembly and yeast vacuole membrane fusion.
    Collins KM; Wickner WT
    Proc Natl Acad Sci U S A; 2007 May; 104(21):8755-60. PubMed ID: 17502611
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole.
    Darsow T; Rieder SE; Emr SD
    J Cell Biol; 1997 Aug; 138(3):517-29. PubMed ID: 9245783
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A screen for dominant negative mutants of SEC18 reveals a role for the AAA protein consensus sequence in ATP hydrolysis.
    Steel GJ; Harley C; Boyd A; Morgan A
    Mol Biol Cell; 2000 Apr; 11(4):1345-56. PubMed ID: 10749934
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phosphoinositide signaling and turnover: PtdIns(3)P, a regulator of membrane traffic, is transported to the vacuole and degraded by a process that requires lumenal vacuolar hydrolase activities.
    Wurmser AE; Emr SD
    EMBO J; 1998 Sep; 17(17):4930-42. PubMed ID: 9724630
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Proteins involved in vesicular transport and membrane fusion.
    Waters MG; Griff IC; Rothman JE
    Curr Opin Cell Biol; 1991 Aug; 3(4):615-20. PubMed ID: 1772655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.