These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 9015368)

  • 1. The role of disulfide bond C191-C220 in trypsin and chymotrypsin.
    Várallyay E; Lengyel Z; Gráf L; Szilágyi L
    Biochem Biophys Res Commun; 1997 Jan; 230(3):592-6. PubMed ID: 9015368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Converting trypsin to chymotrypsin: structural determinants of S1' specificity.
    Kurth T; Ullmann D; Jakubke HD; Hedstrom L
    Biochemistry; 1997 Aug; 36(33):10098-104. PubMed ID: 9254605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Converting trypsin to chymotrypsin: ground-state binding does not determine substrate specificity.
    Hedstrom L; Farr-Jones S; Kettner CA; Rutter WJ
    Biochemistry; 1994 Jul; 33(29):8764-9. PubMed ID: 8038166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of specificity and catalysis in trypsin by structural analysis of site-directed mutants.
    Sprang SR; Fletterick RJ; Gráf L; Rutter WJ; Craik CS
    Crit Rev Biotechnol; 1988; 8(3):225-36. PubMed ID: 3063392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attempts to convert chymotrypsin to trypsin.
    Venekei I; Szilágyi L; Gráf L; Rutter WJ
    FEBS Lett; 1996 Mar; 383(1-2):143-7. PubMed ID: 8612781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structural model for the prostate disease marker, human prostate-specific antigen.
    Villoutreix BO; Getzoff ED; Griffin JH
    Protein Sci; 1994 Nov; 3(11):2033-44. PubMed ID: 7535613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Converting trypsin to chymotrypsin: residue 172 is a substrate specificity determinant.
    Hedstrom L; Perona JJ; Rutter WJ
    Biochemistry; 1994 Jul; 33(29):8757-63. PubMed ID: 8038165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicted three-dimensional structural models of venom serine protease inhibitors and their interactions with trypsin and chymotrypsin.
    Azim MK; Grossmann JG; Zaidi ZH
    J Nat Toxins; 1999 Oct; 8(3):363-84. PubMed ID: 10591040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and characterization of chymotrypsin- and trypsin-like cDNAs from the gut of the Hessian fly [Mayetiola destructor (Say)].
    Zhu YC; Liu X; Maddur AA; Oppert B; Chen MS
    Insect Biochem Mol Biol; 2005 Jan; 35(1):23-32. PubMed ID: 15607652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trypsin: a case study in the structural determinants of enzyme specificity.
    Hedstrom L
    Biol Chem; 1996; 377(7-8):465-70. PubMed ID: 8922280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Converting trypsin to chymotrypsin: the role of surface loops.
    Hedstrom L; Szilagyi L; Rutter WJ
    Science; 1992 Mar; 255(5049):1249-53. PubMed ID: 1546324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of the His57-Asp102 dyad of rat trypsin D189S in the zymogen, activated enzyme, and alpha1-proteinase inhibitor complexed forms.
    Kaslik G; Westler WM; Gráf L; Markley JL
    Arch Biochem Biophys; 1999 Feb; 362(2):254-64. PubMed ID: 9989934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the S' subsites of serine proteases using acyl transfer to mixtures of peptide nucleophiles.
    Schellenberger V; Turck CW; Hedstrom L; Rutter WJ
    Biochemistry; 1993 Apr; 32(16):4349-53. PubMed ID: 8476865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57.
    Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A
    Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attempts to convert chymotrypsin to trypsin.
    Venekei I; Szilágyi L; Gráf L; Rutter WJ
    FEBS Lett; 1996 Jan; 379(2):143-7. PubMed ID: 8635580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational and mutational analysis of human glutaredoxin (thioltransferase): probing the molecular basis of the low pKa of cysteine 22 and its role in catalysis.
    Jao SC; English Ospina SM; Berdis AJ; Starke DW; Post CB; Mieyal JJ
    Biochemistry; 2006 Apr; 45(15):4785-96. PubMed ID: 16605247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graspases--a special group of serine proteases of the chymotrypsin family that has lost a conserved active site disulfide bond.
    Zamolodchikova TS; Sokolova EA; Smirnova EV
    Biochemistry (Mosc); 2003 Mar; 68(3):309-16. PubMed ID: 12733972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molluscan chymotrypsin-like protease: structure, localization, and substrate specificity.
    Groppe JC; Morse DE
    Arch Biochem Biophys; 1993 Aug; 305(1):159-69. PubMed ID: 8342947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis.
    Cha J; Auld DS
    Biochemistry; 1997 Dec; 36(50):16019-24. PubMed ID: 9398337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three dimensional structures of S189D chymotrypsin and D189S trypsin mutants: the effect of polarity at site 189 on a protease-specific stabilization of the substrate-binding site.
    Szabó E; Venekei I; Böcskei Z; Náray-Szabó G; Gráf L
    J Mol Biol; 2003 Aug; 331(5):1121-30. PubMed ID: 12927546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.