BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 9015371)

  • 81. Molecular cloning and sequence analysis of cDNA encoding haemorrhagic toxin acutolysin A from Agkistrodon acutus.
    Liu Q; Xu W; Cheng X; Jin G; Shen X; Lou H; Liu J
    Toxicon; 1999 Nov; 37(11):1539-48. PubMed ID: 10482389
    [TBL] [Abstract][Full Text] [Related]  

  • 82. cDNA sequences for four snake venom metalloproteinases: structure, classification, and their relationship to mammalian reproductive proteins.
    Hite LA; Jia LG; Bjarnason JB; Fox JW
    Arch Biochem Biophys; 1994 Jan; 308(1):182-91. PubMed ID: 8311451
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Snakes on a plain: biotic and abiotic factors determine venom compositional variation in a wide-ranging generalist rattlesnake.
    Smith CF; Nikolakis ZL; Ivey K; Perry BW; Schield DR; Balchan NR; Parker J; Hansen KC; Saviola AJ; Castoe TA; Mackessy SP
    BMC Biol; 2023 Jun; 21(1):136. PubMed ID: 37280596
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Cloning and expression of a cysteine-rich venom protein from Trimeresurus mucrosquamatus (Taiwan habu).
    Chang TY; Mao SH; Guo YW
    Toxicon; 1997 Jun; 35(6):879-88. PubMed ID: 9241782
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Myotoxin-3 from the Pacific Rattlesnake
    González García MC; Radix C; Villard C; Breuzard G; Mansuelle P; Barbier P; Tsvetkov PO; De Pomyers H; Gigmes D; Devred F; Kovacic H; Mabrouk K; Luis J
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500334
    [TBL] [Abstract][Full Text] [Related]  

  • 86. The effects of myotoxin from midget faded rattlesnake (Crotalus viridis concolor) venom on neonatal rat myotubes in cell culture.
    Hayes CE; Bieber AL
    Toxicon; 1986; 24(2):169-73. PubMed ID: 3705095
    [TBL] [Abstract][Full Text] [Related]  

  • 87. cDNA cloning of bradykinin-potentiating peptides-C-type natriuretic peptide precursor, and characterization of the novel peptide Leu3-blomhotin from the venom of Agkistrodon blomhoffi.
    Murayama N; Michel GH; Yanoshita R; Samejima Y; Saguchi K; Ohi H; Fujita Y; Higuchi S
    Eur J Biochem; 2000 Jul; 267(13):4075-80. PubMed ID: 10866809
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Biochemical and physiological studies on a kallikrein-like enzyme from the venom of Crotalus viridis viridis (prairie rattlesnake).
    Komori Y; Nikai T; Sugihara H
    Biochim Biophys Acta; 1988 Oct; 967(1):92-102. PubMed ID: 3167099
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Cloning and nucleotide sequences of crotamine genes.
    Smith LA; Schmidt JJ
    Toxicon; 1990; 28(5):575-85. PubMed ID: 2389256
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Attachment of rattlesnake venom myotoxin a to sarcoplasmic reticulum: peroxidase conjugated method.
    Tu AT; Morita M
    Br J Exp Pathol; 1983 Dec; 64(6):633-7. PubMed ID: 6661395
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Conformational analysis of myotoxin alpha (muscle degenerating toxin) of Prairie rattlesnake venom. Predictions from amino acid sequence, circular dichroism, and Raman spectroscopy.
    Bailey GS; Lee J; Tu AT
    J Biol Chem; 1979 Sep; 254(18):8922-6. PubMed ID: 479168
    [No Abstract]   [Full Text] [Related]  

  • 92. A proposed 3D structure for crotamine based on homology building, molecular simulations and circular dichroism.
    Siqueira AM; Martins NF; De Lima ME; Diniz CR; Cartier A; Brown D; Maigret B
    J Mol Graph Model; 2002 Mar; 20(5):389-98. PubMed ID: 11887801
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Crotamine, a small basic polypeptide myotoxin from rattlesnake venom with cell-penetrating properties.
    Rádis-Baptista G; Kerkis I
    Curr Pharm Des; 2011 Dec; 17(38):4351-61. PubMed ID: 22204433
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Metabolic cost of venom replenishment by Prairie Rattlesnakes (Crotalus viridis viridis).
    Smith MT; Ortega J; Beaupre SJ
    Toxicon; 2014 Aug; 86():1-7. PubMed ID: 24814011
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Crotamine: a novel cell-penetrating polypeptide nanocarrier with potential anti-cancer and biotechnological applications.
    Hayashi MA; Oliveira EB; Kerkis I; Karpel RL
    Methods Mol Biol; 2012; 906():337-52. PubMed ID: 22791447
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Molecular cloning and functional analysis of apoxin I, a snake venom-derived apoptosis-inducing factor with L-amino acid oxidase activity.
    Torii S; Yamane K; Mashima T; Haga N; Yamamoto K; Fox JW; Naito M; Tsuruo T
    Biochemistry; 2000 Mar; 39(12):3197-205. PubMed ID: 10727211
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Primary structure of the snake venom L-amino acid oxidase shows high homology with the mouse B cell interleukin 4-induced Fig1 protein.
    Raibekas AA; Massey V
    Biochem Biophys Res Commun; 1998 Jul; 248(3):476-8. PubMed ID: 9703950
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Intracapsular asexual proliferation of Mesocestoides sp. tetrathyridia in the gastrointestinal tract and mesenteries of the prairie rattlesnake (Crotalus viridis viridis).
    Widmer EA; Engen PC; Bradley GL
    J Parasitol; 1995 Jun; 81(3):493-6. PubMed ID: 7776142
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A plethora of rodents: Rattlesnake predators generate unanticipated patterns of venom resistance in a grassland ecosystem.
    Balchan NR; Smith CF; Mackessy SP
    Toxicon X; 2024 Mar; 21():100179. PubMed ID: 38144228
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The origins and evolution of chromosomes, dosage compensation, and mechanisms underlying venom regulation in snakes.
    Schield DR; Card DC; Hales NR; Perry BW; Pasquesi GM; Blackmon H; Adams RH; Corbin AB; Smith CF; Ramesh B; Demuth JP; Betrán E; Tollis M; Meik JM; Mackessy SP; Castoe TA
    Genome Res; 2019 Apr; 29(4):590-601. PubMed ID: 30898880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.