These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9015452)

  • 1. A possible role of adenylate metabolism in human erythrocytes. 2. Adenylate metabolism is able to improve the erythrocyte volume stabilization.
    Ataullakhanov FI; Komarova SV; Martynov MV; Vitvitsky VM
    J Theor Biol; 1996 Dec; 183(3):307-16. PubMed ID: 9015452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A possible role of adenylate metabolism in human erythrocytes: simple mathematical model.
    Ataullakhanov FI; Komarova SV; Vitvitsky VM
    J Theor Biol; 1996 Mar; 179(1):75-86. PubMed ID: 8733433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volume stabilization in human erythrocytes: combined effects of Ca2+-dependent potassium channels and adenylate metabolism.
    Martinov MV; Vitvitsky VM; Ataullakhanov FI
    Biophys Chem; 1999 Aug; 80(3):199-215. PubMed ID: 10483710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mathematical modelling of glycolysis and of adenine nucleotide metabolism of human erythrocytes. II. Simulation of adenine nucleotide breakdown following glucose depletion].
    Schauer M; Heinrich R; Rapoport SM
    Acta Biol Med Ger; 1981; 40(12):1683-97. PubMed ID: 7345824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Regulation of human erythrocyte volume. The role of calcium channels activated by calcium].
    Ataullakhanov FI; Vitvitskiy VM; Kiiatkin AB; Pichugin AV
    Biofizika; 1993; 38(5):809-21. PubMed ID: 8241312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Energy-dependent processes and metabolism of adenylates in human erythrocytes].
    Ataullakhanov FI; Vitvitskiĭ VM; Komarova SV; Mosharov EV
    Biokhimiia; 1996 Feb; 61(2):266-74. PubMed ID: 8717495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of rapid changes of the oxygenation state and other external parameters on the long-term behavior of the energy metabolism in the erythrocyte].
    Glende M; Geier Th; Meiske W; Reich JG
    Acta Biol Med Ger; 1977; 36(9):1213-20. PubMed ID: 27053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer model of human erythrocyte metabolism.
    Palsson BO; Narang A; Joshi A
    Prog Clin Biol Res; 1989; 319():133-50; discussion 151-4. PubMed ID: 2695934
    [No Abstract]   [Full Text] [Related]  

  • 9. Purine metabolism in normal and high-ITP human erythrocytes. Attempts to evaluate the ability to store the cells.
    De Verdier CH; Niklasson F; Van Waeg G; Ericson A; Högman CH
    Biomed Biochim Acta; 1987; 46(2-3):S263-7. PubMed ID: 3036112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive model of human erythrocyte metabolism: extensions to include pH effects.
    Lee ID; Palsson BO
    Biomed Biochim Acta; 1990; 49(8-9):771-89. PubMed ID: 2082921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of the adenylate energy charge in erythrocytes of rats and humans at high altitude hypoxia.
    Yoshino M; Yamamoto C; Murakami K; Katsumata Y; Mori S
    Comp Biochem Physiol A Comp Physiol; 1992; 101(1):65-8. PubMed ID: 1347733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: computer simulation and metabolic control analysis.
    Mulquiney PJ; Kuchel PW
    Biochem J; 1999 Sep; 342 Pt 3(Pt 3):597-604. PubMed ID: 10477270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of 2-chlorodeoxyadenosine (2-CdA) on the adenine energy charge and glutathione content of human erythrocytes.
    Marczak A; Bukowska B; Koczmara M; Jóźwiak Z
    Cell Biol Int; 2004; 28(12):949-54. PubMed ID: 15566964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythrocyte lysis in isotonic solution of ammonium chloride: theoretical modeling and experimental verification.
    Chernyshev AV; Tarasov PA; Semianov KA; Nekrasov VM; Hoekstra AG; Maltsev VP
    J Theor Biol; 2008 Mar; 251(1):93-107. PubMed ID: 18083194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Analysis of geometric parameters and mechanical properties of erythrocytes by filtration through nuclear membrane filters. I. A mathematical model].
    Ataullakhanov FI; Vitvitskiĭ VM; Lisovskaia IL; Tuzhilova EG
    Biofizika; 1994; 39(4):672-80. PubMed ID: 7981274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Characteristics of the structuro-functional properties and energy metabolism of erythrocytes during space flights of different duration].
    Ushakov AS; Kozinets GI; Ivanova SM; Matvienko VP
    Kosm Biol Aviakosm Med; 1982; 16(1):34-7. PubMed ID: 7062696
    [No Abstract]   [Full Text] [Related]  

  • 17. Steady-state volumes and metabolism-independent osmotic adaptation in mammalian erythrocytes.
    Bogner P; Sipos K; Ludány A; Somogyi B; Miseta A
    Eur Biophys J; 2002 May; 31(2):145-52. PubMed ID: 12012118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic homeostasis in the human erythrocyte: in silico analysis.
    de Atauri P; Ramírez MJ; Kuchel PW; Carreras J; Cascante M
    Biosystems; 2006; 83(2-3):118-24. PubMed ID: 16236423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectro-deformations of erythrocyte: analysis of the ellipsoidal shear model.
    Kononenko VL; Ilyina TA
    Membr Cell Biol; 2001; 14(4):537-51. PubMed ID: 11497108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical model of reticulocyte to erythrocyte shape transformation.
    Pawlowski PH; Burzyńska B; Zielenkiewicz P
    J Theor Biol; 2006 Nov; 243(1):24-38. PubMed ID: 16876199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.