BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9015452)

  • 1. A possible role of adenylate metabolism in human erythrocytes. 2. Adenylate metabolism is able to improve the erythrocyte volume stabilization.
    Ataullakhanov FI; Komarova SV; Martynov MV; Vitvitsky VM
    J Theor Biol; 1996 Dec; 183(3):307-16. PubMed ID: 9015452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A possible role of adenylate metabolism in human erythrocytes: simple mathematical model.
    Ataullakhanov FI; Komarova SV; Vitvitsky VM
    J Theor Biol; 1996 Mar; 179(1):75-86. PubMed ID: 8733433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volume stabilization in human erythrocytes: combined effects of Ca2+-dependent potassium channels and adenylate metabolism.
    Martinov MV; Vitvitsky VM; Ataullakhanov FI
    Biophys Chem; 1999 Aug; 80(3):199-215. PubMed ID: 10483710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mathematical modelling of glycolysis and of adenine nucleotide metabolism of human erythrocytes. II. Simulation of adenine nucleotide breakdown following glucose depletion].
    Schauer M; Heinrich R; Rapoport SM
    Acta Biol Med Ger; 1981; 40(12):1683-97. PubMed ID: 7345824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Regulation of human erythrocyte volume. The role of calcium channels activated by calcium].
    Ataullakhanov FI; Vitvitskiy VM; Kiiatkin AB; Pichugin AV
    Biofizika; 1993; 38(5):809-21. PubMed ID: 8241312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Energy-dependent processes and metabolism of adenylates in human erythrocytes].
    Ataullakhanov FI; Vitvitskiĭ VM; Komarova SV; Mosharov EV
    Biokhimiia; 1996 Feb; 61(2):266-74. PubMed ID: 8717495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of rapid changes of the oxygenation state and other external parameters on the long-term behavior of the energy metabolism in the erythrocyte].
    Glende M; Geier Th; Meiske W; Reich JG
    Acta Biol Med Ger; 1977; 36(9):1213-20. PubMed ID: 27053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer model of human erythrocyte metabolism.
    Palsson BO; Narang A; Joshi A
    Prog Clin Biol Res; 1989; 319():133-50; discussion 151-4. PubMed ID: 2695934
    [No Abstract]   [Full Text] [Related]  

  • 9. Purine metabolism in normal and high-ITP human erythrocytes. Attempts to evaluate the ability to store the cells.
    De Verdier CH; Niklasson F; Van Waeg G; Ericson A; Högman CH
    Biomed Biochim Acta; 1987; 46(2-3):S263-7. PubMed ID: 3036112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive model of human erythrocyte metabolism: extensions to include pH effects.
    Lee ID; Palsson BO
    Biomed Biochim Acta; 1990; 49(8-9):771-89. PubMed ID: 2082921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of the adenylate energy charge in erythrocytes of rats and humans at high altitude hypoxia.
    Yoshino M; Yamamoto C; Murakami K; Katsumata Y; Mori S
    Comp Biochem Physiol A Comp Physiol; 1992; 101(1):65-8. PubMed ID: 1347733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: computer simulation and metabolic control analysis.
    Mulquiney PJ; Kuchel PW
    Biochem J; 1999 Sep; 342 Pt 3(Pt 3):597-604. PubMed ID: 10477270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of 2-chlorodeoxyadenosine (2-CdA) on the adenine energy charge and glutathione content of human erythrocytes.
    Marczak A; Bukowska B; Koczmara M; Jóźwiak Z
    Cell Biol Int; 2004; 28(12):949-54. PubMed ID: 15566964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythrocyte lysis in isotonic solution of ammonium chloride: theoretical modeling and experimental verification.
    Chernyshev AV; Tarasov PA; Semianov KA; Nekrasov VM; Hoekstra AG; Maltsev VP
    J Theor Biol; 2008 Mar; 251(1):93-107. PubMed ID: 18083194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Analysis of geometric parameters and mechanical properties of erythrocytes by filtration through nuclear membrane filters. I. A mathematical model].
    Ataullakhanov FI; Vitvitskiĭ VM; Lisovskaia IL; Tuzhilova EG
    Biofizika; 1994; 39(4):672-80. PubMed ID: 7981274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Characteristics of the structuro-functional properties and energy metabolism of erythrocytes during space flights of different duration].
    Ushakov AS; Kozinets GI; Ivanova SM; Matvienko VP
    Kosm Biol Aviakosm Med; 1982; 16(1):34-7. PubMed ID: 7062696
    [No Abstract]   [Full Text] [Related]  

  • 17. Steady-state volumes and metabolism-independent osmotic adaptation in mammalian erythrocytes.
    Bogner P; Sipos K; Ludány A; Somogyi B; Miseta A
    Eur Biophys J; 2002 May; 31(2):145-52. PubMed ID: 12012118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic homeostasis in the human erythrocyte: in silico analysis.
    de Atauri P; Ramírez MJ; Kuchel PW; Carreras J; Cascante M
    Biosystems; 2006; 83(2-3):118-24. PubMed ID: 16236423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectro-deformations of erythrocyte: analysis of the ellipsoidal shear model.
    Kononenko VL; Ilyina TA
    Membr Cell Biol; 2001; 14(4):537-51. PubMed ID: 11497108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical model of reticulocyte to erythrocyte shape transformation.
    Pawlowski PH; Burzyńska B; Zielenkiewicz P
    J Theor Biol; 2006 Nov; 243(1):24-38. PubMed ID: 16876199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.