BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 9016359)

  • 1. Mechanism of phosphorylation-recognition by visual arrestin and the transition of arrestin into a high affinity binding state.
    Gurevich VV; Benovic JL
    Mol Pharmacol; 1997 Jan; 51(1):161-9. PubMed ID: 9016359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The selectivity of visual arrestin for light-activated phosphorhodopsin is controlled by multiple nonredundant mechanisms.
    Gurevich VV
    J Biol Chem; 1998 Jun; 273(25):15501-6. PubMed ID: 9624137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual arrestin interaction with rhodopsin. Sequential multisite binding ensures strict selectivity toward light-activated phosphorylated rhodopsin.
    Gurevich VV; Benovic JL
    J Biol Chem; 1993 Jun; 268(16):11628-38. PubMed ID: 8505295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-free expression of visual arrestin. Truncation mutagenesis identifies multiple domains involved in rhodopsin interaction.
    Gurevich VV; Benovic JL
    J Biol Chem; 1992 Oct; 267(30):21919-23. PubMed ID: 1400502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual arrestin binding to rhodopsin. Diverse functional roles of positively charged residues within the phosphorylation-recognition region of arrestin.
    Gurevich VV; Benovic JL
    J Biol Chem; 1995 Mar; 270(11):6010-6. PubMed ID: 7890732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An additional phosphate-binding element in arrestin molecule. Implications for the mechanism of arrestin activation.
    Vishnivetskiy SA; Schubert C; Climaco GC; Gurevich YV; Velez MG; Gurevich VV
    J Biol Chem; 2000 Dec; 275(52):41049-57. PubMed ID: 11024026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arrestin with a single amino acid substitution quenches light-activated rhodopsin in a phosphorylation-independent fashion.
    Gray-Keller MP; Detwiler PB; Benovic JL; Gurevich VV
    Biochemistry; 1997 Jun; 36(23):7058-63. PubMed ID: 9188704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of arrestin: requirement of phosphorylation as the negative charge on residues in synthetic peptides from the carboxyl-terminal region of rhodopsin.
    McDowell JH; Robinson PR; Miller RL; Brannock MT; Arendt A; Smith WC; Hargrave PA
    Invest Ophthalmol Vis Sci; 2001 Jun; 42(7):1439-43. PubMed ID: 11381044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct binding of visual arrestin to a rhodopsin carboxyl terminal synthetic phosphopeptide.
    Liu P; Roush ED; Bruno J; Osawa S; Weiss ER
    Mol Vis; 2004 Oct; 10():712-9. PubMed ID: 15480300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual arrestin binding to rhodopsin. Intramolecular interaction between the basic N terminus and acidic C terminus of arrestin may regulate binding selectivity.
    Gurevich VV; Chen CY; Kim CM; Benovic JL
    J Biol Chem; 1994 Mar; 269(12):8721-7. PubMed ID: 8132602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition of arrestin into the active receptor-binding state requires an extended interdomain hinge.
    Vishnivetskiy SA; Hirsch JA; Velez MG; Gurevich YV; Gurevich VV
    J Biol Chem; 2002 Nov; 277(46):43961-7. PubMed ID: 12215448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin.
    Krupnick JG; Gurevich VV; Benovic JL
    J Biol Chem; 1997 Jul; 272(29):18125-31. PubMed ID: 9218446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How does arrestin respond to the phosphorylated state of rhodopsin?
    Vishnivetskiy SA; Paz CL; Schubert C; Hirsch JA; Sigler PB; Gurevich VV
    J Biol Chem; 1999 Apr; 274(17):11451-4. PubMed ID: 10206946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arrestin-rhodopsin interaction. Multi-site binding delineated by peptide inhibition.
    Krupnick JG; Gurevich VV; Schepers T; Hamm HE; Benovic JL
    J Biol Chem; 1994 Feb; 269(5):3226-32. PubMed ID: 8106358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Role of Arrestin-1 Residues Interacting with Unphosphorylated Rhodopsin Elements.
    Vishnivetskiy SA; Weinstein LD; Zheng C; Gurevich EV; Gurevich VV
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodopsin phosphorylation sites and their role in arrestin binding.
    Zhang L; Sports CD; Osawa S; Weiss ER
    J Biol Chem; 1997 Jun; 272(23):14762-8. PubMed ID: 9169442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arrestin interactions with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, beta 2-adrenergic, and m2 muscarinic cholinergic receptors.
    Gurevich VV; Dion SB; Onorato JJ; Ptasienski J; Kim CM; Sterne-Marr R; Hosey MM; Benovic JL
    J Biol Chem; 1995 Jan; 270(2):720-31. PubMed ID: 7822302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of arrestin to cytoplasmic loop mutants of bovine rhodopsin.
    Raman D; Osawa S; Weiss ER
    Biochemistry; 1999 Apr; 38(16):5117-23. PubMed ID: 10213616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A segment corresponding to amino acids Val170-Arg182 of bovine arrestin is capable of binding to phosphorylated rhodopsin.
    Kieselbach T; Irrgang KD; Rüppel H
    Eur J Biochem; 1994 Nov; 226(1):87-97. PubMed ID: 7957262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding.
    Vishnivetskiy SA; Ostermaier MK; Singhal A; Panneels V; Homan KT; Glukhova A; Sligar SG; Tesmer JJ; Schertler GF; Standfuss J; Gurevich VV
    Cell Signal; 2013 Nov; 25(11):2155-62. PubMed ID: 23872075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.