These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 9016580)

  • 21. Improved methylation protection-based DNA footprinting to reveal structural distortion of DNA upon transcription factor binding.
    Reid KJ; Nelson CC
    Biotechniques; 2001 Jan; 30(1):20-2. PubMed ID: 11196311
    [No Abstract]   [Full Text] [Related]  

  • 22. Uncoupling DNA translocation and helicase activity in PcrA: direct evidence for an active mechanism.
    Soultanas P; Dillingham MS; Wiley P; Webb MR; Wigley DB
    EMBO J; 2000 Jul; 19(14):3799-810. PubMed ID: 10899133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural interpretation of DNA-protein hydroxyl-radical footprinting experiments with high resolution using HYDROID.
    Shaytan AK; Xiao H; Armeev GA; Gaykalova DA; Komarova GA; Wu C; Studitsky VM; Landsman D; Panchenko AR
    Nat Protoc; 2018 Nov; 13(11):2535-2556. PubMed ID: 30341436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using a comparative in vivo DNase I footprinting technique to analyze changes in protein-DNA interactions following phthalate exposure.
    Kuhl AJ; Ross SM; Gaido KW
    J Biochem Mol Toxicol; 2007; 21(5):312-22. PubMed ID: 17912698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved recovery of DNA from polyacrylamide gels after in situ DNA footprinting.
    van Keulen G; Meijer WG
    J Microbiol Methods; 2003 Aug; 54(2):289-91. PubMed ID: 12782386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo footprinting of the mouse inducible nitric oxide synthase gene: inducible protein occupation of numerous sites including Oct and NF-IL6.
    Goldring CE; Reveneau S; Algarté M; Jeannin JF
    Nucleic Acids Res; 1996 May; 24(9):1682-7. PubMed ID: 8649986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-Wide Analysis of ResD, NsrR, and Fur Binding in Bacillus subtilis during Anaerobic Fermentative Growth by
    Chumsakul O; Anantsri DP; Quirke T; Oshima T; Nakamura K; Ishikawa S; Nakano MM
    J Bacteriol; 2017 Jul; 199(13):. PubMed ID: 28439033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmid pIP501 encoded transcriptional repressor CopR binds asymmetrically at two consecutive major grooves of the DNA.
    Steinmetzer K; Brantl S
    J Mol Biol; 1997 Jun; 269(5):684-93. PubMed ID: 9223633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA-stacking interactions determine the sequence specificity of the deoxyribonuclease activity of 1,10-phenanthroline-copper ion.
    Schaeffer F; Rimsky S; Spassky A
    J Mol Biol; 1996 Jul; 260(4):523-39. PubMed ID: 8759318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purification of DNA fragments containing excision-repair patches from human cells using streptavidin-biotin.
    Larone GE; Hunting DJ
    Mutat Res; 1991 May; 254(3):273-80. PubMed ID: 2052014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Deinococcus radiodurans-encoded HU protein has two DNA-binding domains.
    Ghosh S; Grove A
    Biochemistry; 2006 Feb; 45(6):1723-33. PubMed ID: 16460019
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of Nonradiochemical DNAse Footprinting to Analyze c-di-GMP Modulation of DNA-Binding Proteins.
    Baraquet C; Harwood CS
    Methods Mol Biol; 2017; 1657():303-315. PubMed ID: 28889304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visualising DNA: footprinting and 1-2D gels.
    Urbach AR; Waring MJ
    Mol Biosyst; 2005 Oct; 1(4):287-93. PubMed ID: 16880993
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Footprinting with UV irradiation and LMPCR.
    Pfeifer GP; Tornaletti S
    Methods; 1997 Feb; 11(2):189-96. PubMed ID: 8993031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Copper-1,10-phenanthroline complexes binding to DNA: structural predictions from molecular simulations.
    Robertazzi A; Vargiu AV; Magistrato A; Ruggerone P; Carloni P; de Hoog P; Reedijk J
    J Phys Chem B; 2009 Aug; 113(31):10881-90. PubMed ID: 19719275
    [TBL] [Abstract][Full Text] [Related]  

  • 36. System for accurate one-dimensional gel analysis including high-resolution quantitative footprinting.
    Smith J; Singh M
    Biotechniques; 1996 Jun; 20(6):1082-7. PubMed ID: 8780878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The architecture of the heat-inducible Drosophila hsp27 promoter in nuclei.
    Quivy JP; Becker PB
    J Mol Biol; 1996 Feb; 256(2):249-63. PubMed ID: 8594194
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Footprinting RNA-protein complexes following gel retardation assays: application to the R-17-procoat-RNA and tat--TAR interactions.
    Pearson L; Chen CB; Gaynor RP; Sigman DS
    Nucleic Acids Res; 1994 Jun; 22(12):2255-63. PubMed ID: 8036153
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 5-amino-2'-deoxyuridine, a novel thymidine analogue for high-resolution footprinting of protein-DNA complexes.
    Storek MJ; Suciu A; Verdine GL
    Org Lett; 2002 Oct; 4(22):3867-9. PubMed ID: 12599479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo footprinting and mutational analysis of the proximal CD19 promoter reveal important roles for an SP1/Egr-1 binding site and a novel site termed the PyG box.
    Riva A; Wilson GL; Kehrl JH
    J Immunol; 1997 Aug; 159(3):1284-92. PubMed ID: 9233624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.