BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 9016595)

  • 21. Interaction of AluI, Cfr6I and PvuII restriction-modification enzymes with substrates containing either N4-methylcytosine or 5-methylcytosine.
    Butkus V; Klimasauskas S; Petrauskiene L; Maneliene Z; Lebionka A; Janulaitis A
    Biochim Biophys Acta; 1987 Aug; 909(3):201-7. PubMed ID: 3040102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA.
    Nestor C; Ruzov A; Meehan R; Dunican D
    Biotechniques; 2010 Apr; 48(4):317-9. PubMed ID: 20569209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the 5-hydroxymethylcytosine-specific DNA restriction endonucleases.
    Borgaro JG; Zhu Z
    Nucleic Acids Res; 2013 Apr; 41(7):4198-206. PubMed ID: 23482393
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substrate recognition by the Pvu II endonuclease: binding and cleavage of CAG5mCTG sites.
    Rice MR; Koons MD; Blumenthal RM
    Nucleic Acids Res; 1999 Feb; 27(4):1032-8. PubMed ID: 9927736
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of decadeoxyribonucleotides containing N6-methyladenine, N4-methylcytosine, and 5-methylcytosine: recognition and cleavage by restriction endonucleases (nucleosides and nucleotides part 74).
    Ono A; Ueda T
    Nucleic Acids Res; 1987 Jan; 15(1):219-32. PubMed ID: 3029671
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic studies of MvaI DNA methyltransferase interaction with modified oligonucleotide duplexes.
    Gromova ES; Oretskaya TS; Eritja R; Guschlbauer W
    Biochem Mol Biol Int; 1995 Jun; 36(2):247-55. PubMed ID: 7663428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of 5-methylcytosine as a neighboring base on methylation of DNA guanine by N-methyl-N-nitrosourea.
    Mathison BH; Said B; Shank RC
    Carcinogenesis; 1993 Feb; 14(2):323-7. PubMed ID: 8435876
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome Wide Mapping of Methylated and Hydroxyl-Methylated Cytosines Using a Modified HpaII Tiny Fragment Enrichment by Ligation Mediated PCR Tagged Sequencing Protocol.
    Battachariyya S; Tytarenko R; Heuck C; Greally J; Verma A
    Methods Mol Biol; 2018; 1792():167-177. PubMed ID: 29797259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Specific protection of methylated CpGs in mammalian nuclei.
    Antequera F; Macleod D; Bird AP
    Cell; 1989 Aug; 58(3):509-17. PubMed ID: 2474378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 5-methylcytosine at HpaII sites in p53 is not hypermutable after UVC irradiation.
    Monti P; Inga A; Scott G; Aprile A; Campomenosi P; Menichini P; Ottaggio L; Viaggi S; Abbondandolo A; Burns PA; Fronza G
    Mutat Res; 1999 Dec; 431(1):93-103. PubMed ID: 10656489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Label-free fluorescence detection of DNA methylation and methyltransferase activity based on restriction endonuclease HpaII and exonuclease III.
    Gao C; Li H; Liu Y; Wei W; Zhang Y; Liu S
    Analyst; 2014 Dec; 139(24):6387-92. PubMed ID: 25343162
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A cytosine methyltransferase converts 5-methylcytosine in DNA to thymine.
    Yebra MJ; Bhagwat AS
    Biochemistry; 1995 Nov; 34(45):14752-7. PubMed ID: 7578083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methyl-specific DNA binding by McrBC, a modification-dependent restriction enzyme.
    Stewart FJ; Panne D; Bickle TA; Raleigh EA
    J Mol Biol; 2000 May; 298(4):611-22. PubMed ID: 10788324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of sequence-dependent cytosine protonation and methylation on DNA triplex stability.
    Leitner D; Schröder W; Weisz K
    Biochemistry; 2000 May; 39(19):5886-92. PubMed ID: 10801340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microarray-based method to evaluate the accuracy of restriction endonucleases HpaII and MspI.
    Hou P; Ji M; He N; Lu Z
    Biochem Biophys Res Commun; 2004 Jan; 314(1):110-7. PubMed ID: 14715253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrochemical signal-amplified detection of 5-methylcytosine and 5-hydroxymethylcytosine in DNA using glucose modification coupled with restriction endonucleases.
    Yang Y; Yang G; Chen H; Zhang H; Feng JJ; Cai C
    Analyst; 2018 Apr; 143(9):2051-2056. PubMed ID: 29629447
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photocurrent response after enzymatic treatment of DNA duplexes immobilized on gold electrodes: electrochemical discrimination of 5-methylcytosine modification in DNA.
    Yamada H; Tanabe K; Nishimoto S
    Org Biomol Chem; 2008 Jan; 6(2):272-7. PubMed ID: 18174996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytosine modifications in neurodevelopment and diseases.
    Yao B; Jin P
    Cell Mol Life Sci; 2014 Feb; 71(3):405-18. PubMed ID: 23912899
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of transcription in vitro by binding of DNA (cytosine-5)-methylases to DNA templates containing cytosine analogs.
    Som S; Friedman S
    J Biol Chem; 1994 Oct; 269(42):25986-91. PubMed ID: 7523398
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Free radical adducts induce alterations in DNA cytosine methylation.
    Weitzman SA; Turk PW; Milkowski DH; Kozlowski K
    Proc Natl Acad Sci U S A; 1994 Feb; 91(4):1261-4. PubMed ID: 8108398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.