BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 9016602)

  • 41. Eukaryotic topoisomerase II preferentially cleaves alternating purine-pyrimidine repeats.
    Spitzner JR; Chung IK; Muller MT
    Nucleic Acids Res; 1990 Jan; 18(1):1-11. PubMed ID: 2155393
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of four GyrA residues involved in the DNA breakage-reunion reaction of DNA gyrase.
    Hockings SC; Maxwell A
    J Mol Biol; 2002 Apr; 318(2):351-9. PubMed ID: 12051842
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pyrrolopyrimidine inhibitors of DNA gyrase B (GyrB) and topoisomerase IV (ParE). Part I: Structure guided discovery and optimization of dual targeting agents with potent, broad-spectrum enzymatic activity.
    Tari LW; Trzoss M; Bensen DC; Li X; Chen Z; Lam T; Zhang J; Creighton CJ; Cunningham ML; Kwan B; Stidham M; Shaw KJ; Lightstone FC; Wong SE; Nguyen TB; Nix J; Finn J
    Bioorg Med Chem Lett; 2013 Mar; 23(5):1529-36. PubMed ID: 23352267
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The complex of DNA gyrase and quinolone drugs on DNA forms a barrier to the T7 DNA polymerase replication complex.
    Wentzell LM; Maxwell A
    J Mol Biol; 2000 Dec; 304(5):779-91. PubMed ID: 11124026
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanism of DNA gyrase-mediated illegitimate recombination: characterization of Escherichia coli gyrA mutations that confer hyper-recombination phenotype.
    Ashizawa Y; Yokochi T; Ogata Y; Shobuike Y; Kato J; Ikeda H
    J Mol Biol; 1999 Jun; 289(3):447-58. PubMed ID: 10356321
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanism of inhibition of DNA gyrase by analogues of nalidixic acid: the target of the drugs is DNA.
    Shen LL; Pernet AG
    Proc Natl Acad Sci U S A; 1985 Jan; 82(2):307-11. PubMed ID: 2982149
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular mechanism of topoisomerase poisoning by the peptide antibiotic albicidin.
    Michalczyk E; Hommernick K; Behroz I; Kulike M; Pakosz-Stępień Z; Mazurek L; Seidel M; Kunert M; Santos K; von Moeller H; Loll B; Weston JB; Mainz A; Heddle JG; Süssmuth RD; Ghilarov D
    Nat Catal; 2023; 6(1):52-67. PubMed ID: 36741192
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Fluorescence-Based, T5 Exonuclease-Amplified DNA Cleavage Assay for Discovering Bacterial DNA Gyrase Poisons.
    Dias M; Chapagain T; Leng F
    bioRxiv; 2023 Oct; ():. PubMed ID: 37904923
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Non-enzymatic DNA cleavage reaction induced by 5-ethynyluracil in methylamine aqueous solution and application to DNA concatenation.
    Ikeda S; Tainaka K; Matsumoto K; Shinohara Y; Ode KL; Susaki EA; Ueda HR
    PLoS One; 2014; 9(3):e92369. PubMed ID: 24647759
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Single-nucleotide-resolution mapping of DNA gyrase cleavage sites across the Escherichia coli genome.
    Sutormin D; Rubanova N; Logacheva M; Ghilarov D; Severinov K
    Nucleic Acids Res; 2019 Feb; 47(3):1601. PubMed ID: 30624743
    [No Abstract]   [Full Text] [Related]  

  • 51. The pentapeptide-repeat protein, MfpA, interacts with mycobacterial DNA gyrase as a DNA T-segment mimic.
    Feng L; Mundy JEA; Stevenson CEM; Mitchenall LA; Lawson DM; Mi K; Maxwell A
    Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33836580
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exploiting bacterial DNA gyrase as a drug target: current state and perspectives.
    Collin F; Karkare S; Maxwell A
    Appl Microbiol Biotechnol; 2011 Nov; 92(3):479-97. PubMed ID: 21904817
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Type IIA topoisomerase inhibition by a new class of antibacterial agents.
    Bax BD; Chan PF; Eggleston DS; Fosberry A; Gentry DR; Gorrec F; Giordano I; Hann MM; Hennessy A; Hibbs M; Huang J; Jones E; Jones J; Brown KK; Lewis CJ; May EW; Saunders MR; Singh O; Spitzfaden CE; Shen C; Shillings A; Theobald AJ; Wohlkonig A; Pearson ND; Gwynn MN
    Nature; 2010 Aug; 466(7309):935-40. PubMed ID: 20686482
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Panel of Bacillus subtilis reporter strains indicative of various modes of action.
    Hutter B; Fischer C; Jacobi A; Schaab C; Loferer H
    Antimicrob Agents Chemother; 2004 Jul; 48(7):2588-94. PubMed ID: 15215113
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quinolone-DNA interaction: sequence-dependent binding to single-stranded DNA reflects the interaction within the gyrase-DNA complex.
    Noble CG; Barnard FM; Maxwell A
    Antimicrob Agents Chemother; 2003 Mar; 47(3):854-62. PubMed ID: 12604512
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Importance of the fourth alpha-helix within the CAP homology domain of type II topoisomerase for DNA cleavage site recognition and quinolone action.
    Strumberg D; Nitiss JL; Dong J; Walker J; Nicklaus MC; Kohn KW; Heddle JG; Maxwell A; Seeber S; Pommier Y
    Antimicrob Agents Chemother; 2002 Sep; 46(9):2735-46. PubMed ID: 12183223
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quinolone-binding pocket of DNA gyrase: role of GyrB.
    Heddle J; Maxwell A
    Antimicrob Agents Chemother; 2002 Jun; 46(6):1805-15. PubMed ID: 12019094
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gene expression changes triggered by exposure of Haemophilus influenzae to novobiocin or ciprofloxacin: combined transcription and translation analysis.
    Gmuender H; Kuratli K; Di Padova K ; Gray CP; Keck W; Evers S
    Genome Res; 2001 Jan; 11(1):28-42. PubMed ID: 11156613
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sequence specific interaction of Mycobacterium smegmatis topoisomerase I with duplex DNA.
    Bhaduri T; Sikder D; Nagaraja V
    Nucleic Acids Res; 1998 Apr; 26(7):1668-74. PubMed ID: 9512537
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.