These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9016608)

  • 1. Metal ion interaction with cosubstrate in self-splicing of group I introns.
    Sjögren AS; Pettersson E; Sjöberg BM; Strömberg R
    Nucleic Acids Res; 1997 Feb; 25(3):648-53. PubMed ID: 9016608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH dependence of self-splicing by the group IA2 intron in a pre-mRNA derived from the nrdB gene of bacteriophage T4.
    Sjögren AS; Strömberg R; Sjöberg BM
    Nucleic Acids Res; 1997 Sep; 25(17):3543-9. PubMed ID: 9254717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2'-Amino-2'-deoxyguanosine is a cofactor for self-splicing in group I catalytic RNA.
    Strömberg R; Hahne S; Sjögren AS; Sjöberg BM
    Biochem Biophys Res Commun; 1992 Mar; 183(2):842-8. PubMed ID: 1550590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping divalent metal ion binding sites in a group II intron by Mn(2+)- and Zn(2+)-induced site-specific RNA cleavage.
    Hertweck M; Mueller MW
    Eur J Biochem; 2001 Sep; 268(17):4610-20. PubMed ID: 11531997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional and sequence analysis of splicing defective nrdB mutants of bacteriophage T4 reveal new bases and a new sub-domain required for group I intron self-splicing.
    Lal SK; Hall DH
    Biochim Biophys Acta; 1997 Jan; 1350(1):89-97. PubMed ID: 9003462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restoration of mRNA splicing by a second-site intragenic suppressor in the T4 ribonucleotide reductase (small subunit) self-splicing intron.
    Khan AU; Ahmad M; Lal SK
    Biochem Biophys Res Commun; 2000 Feb; 268(2):359-64. PubMed ID: 10679208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-splicing of the bacteriophage T4 group I introns requires efficient translation of the pre-mRNA in vivo and correlates with the growth state of the infected bacterium.
    Sandegren L; Sjöberg BM
    J Bacteriol; 2007 Feb; 189(3):980-90. PubMed ID: 17122344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal coordination sites that contribute to structure and catalysis in the group I intron from Tetrahymena.
    Christian EL; Yarus M
    Biochemistry; 1993 May; 32(17):4475-80. PubMed ID: 7683490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The environment of two metal ions surrounding the splice site of a group I intron.
    Streicher B; Westhof E; Schroeder R
    EMBO J; 1996 May; 15(10):2556-64. PubMed ID: 8665863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A second divalent metal ion in the group II intron reaction center.
    Gordon PM; Fong R; Piccirilli JA
    Chem Biol; 2007 Jun; 14(6):607-12. PubMed ID: 17584608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable occurrence of the nrdB intron in the T-even phages suggests intron mobility.
    Pedersen-Lane J; Belfort M
    Science; 1987 Jul; 237(4811):182-4. PubMed ID: 3037701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of EMS induced splicing defective point mutations within the intron of the nrdB gene of bacteriophage T4.
    Khan AU; Lal SK; Ahmad M
    Biochem Biophys Res Commun; 1998 Jan; 242(1):10-5. PubMed ID: 9439601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unexpected metal ion requirements specific for catalysis of the branching reaction in a group II intron.
    Dème E; Nolte A; Jacquier A
    Biochemistry; 1999 Mar; 38(10):3157-67. PubMed ID: 10074371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural evidence for a two-metal-ion mechanism of group I intron splicing.
    Stahley MR; Strobel SA
    Science; 2005 Sep; 309(5740):1587-90. PubMed ID: 16141079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unusual metal specificity and structure of the group I ribozyme from Chlamydomonas reinhardtii 23S rRNA.
    Kuo TC; Odom OW; Herrin DL
    FEBS J; 2006 Jun; 273(12):2631-44. PubMed ID: 16817892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel approach for isolation and mapping of intron mutations in a ribonucleotide reductase encoding gene (nrdB) of bacteriophage T4 using the white halo plaque phenotype.
    Lal SK; Hall DH
    Biochem Biophys Res Commun; 1993 Oct; 196(2):943-9. PubMed ID: 8240371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A second catalytic metal ion in group I ribozyme.
    Weinstein LB; Jones BC; Cosstick R; Cech TR
    Nature; 1997 Aug; 388(6644):805-8. PubMed ID: 9285596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualizing metal-ion-binding sites in group I introns by iron(II)-mediated Fenton reactions.
    Berens C; Streicher B; Schroeder R; Hillen W
    Chem Biol; 1998 Mar; 5(3):163-75. PubMed ID: 9545425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal ion catalysis during splicing of premessenger RNA.
    Sontheimer EJ; Sun S; Piccirilli JA
    Nature; 1997 Aug; 388(6644):801-5. PubMed ID: 9285595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divalent metal ion binding to a conserved wobble pair defining the upstream site of cleavage of group I self-splicing introns.
    Allain FH; Varani G
    Nucleic Acids Res; 1995 Feb; 23(3):341-50. PubMed ID: 7885828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.