These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
49 related articles for article (PubMed ID: 9016786)
1. The nucleolar phosphoprotein P130 is a GTPase/ATPase with intrinsic property to form large complexes triggered by F- and Mg2+. Chen HK; Yeh NH Biochem Biophys Res Commun; 1997 Jan; 230(2):370-5. PubMed ID: 9016786 [TBL] [Abstract][Full Text] [Related]
2. The core domain of the tissue transglutaminase Gh hydrolyzes GTP and ATP. Iismaa SE; Chung L; Wu MJ; Teller DC; Yee VC; Graham RM Biochemistry; 1997 Sep; 36(39):11655-64. PubMed ID: 9305955 [TBL] [Abstract][Full Text] [Related]
3. The role of the metal ion in the p21ras catalysed GTP-hydrolysis: Mn2+ versus Mg2+. Schweins T; Scheffzek K; Assheuer R; Wittinghofer A J Mol Biol; 1997 Mar; 266(4):847-56. PubMed ID: 9102473 [TBL] [Abstract][Full Text] [Related]
4. CCKA receptor activation stimulates p130(Cas) tyrosine phosphorylation, translocation, and association with Crk in rat pancreatic acinar cells. Ferris HA; Tapia JA; GarcĂa LJ; Jensen RT Biochemistry; 1999 Feb; 38(5):1497-508. PubMed ID: 9931015 [TBL] [Abstract][Full Text] [Related]
6. ATPase and GTPase activities copurifying with GTP-binding proteins in E. coli. Sayed A; Matsuyama S; Inoue K; Alsina J; Cai F; Chen J; Inouye M J Mol Microbiol Biotechnol; 2000 Jul; 2(3):261-3. PubMed ID: 10937433 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of ATPase, GTPase and adenylate kinase activities of the second nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator by genistein. Randak C; Auerswald EA; Assfalg-Machleidt I; Reenstra WW; Machleidt W Biochem J; 1999 May; 340 ( Pt 1)(Pt 1):227-35. PubMed ID: 10229679 [TBL] [Abstract][Full Text] [Related]
8. Cell-cycle-dependent alterations of a highly phosphorylated nucleolar protein p130 are associated with nucleologenesis. Pai CY; Chen HK; Sheu HL; Yeh NH J Cell Sci; 1995 May; 108 ( Pt 5)():1911-20. PubMed ID: 7657714 [TBL] [Abstract][Full Text] [Related]
9. A novel P-type Cl(-)-stimulated ATPase: phosphorylation and specificity. Gerencser GA Biochem Biophys Res Commun; 1993 Nov; 196(3):1188-94. PubMed ID: 8250876 [TBL] [Abstract][Full Text] [Related]
10. Calreticulin down-regulates both GTP binding and transglutaminase activities of transglutaminase II. Feng JF; Readon M; Yadav SP; Im MJ Biochemistry; 1999 Aug; 38(33):10743-9. PubMed ID: 10451369 [TBL] [Abstract][Full Text] [Related]
11. Nucleoside diphosphate kinase of Mycobacterium tuberculosis acts as GTPase-activating protein for Rho-GTPases. Chopra P; Koduri H; Singh R; Koul A; Ghildiyal M; Sharma K; Tyagi AK; Singh Y FEBS Lett; 2004 Jul; 571(1-3):212-6. PubMed ID: 15280044 [TBL] [Abstract][Full Text] [Related]
12. A novel lysine-rich domain and GTP binding motifs regulate the nucleolar retention of human guanine nucleotide binding protein, GNL3L. Rao MR; Kumari G; Balasundaram D; Sankaranarayanan R; Mahalingam S J Mol Biol; 2006 Dec; 364(4):637-54. PubMed ID: 17034816 [TBL] [Abstract][Full Text] [Related]
13. Characterization of an E2F-p130 complex formed during growth arrest. Corbeil HB; Branton PE Oncogene; 1997 Aug; 15(6):657-68. PubMed ID: 9264406 [TBL] [Abstract][Full Text] [Related]
14. Over-expression of GTP-binding proteins and GTPase activity in mouse astrocyte membranes in response to Theiler's murine encephalomyelitis virus infection. Rubio N; Gonzalez-Tirante M; Arevalo MA; Aranguez I J Neurochem; 2008 Jan; 104(1):100-12. PubMed ID: 17995937 [TBL] [Abstract][Full Text] [Related]
15. Prodan fluorescence reflects differences in nucleotide-induced conformational states in the myosin head and allows continuous visualization of the ATPase reactions. Hiratsuka T Biochemistry; 1998 May; 37(20):7167-76. PubMed ID: 9585528 [TBL] [Abstract][Full Text] [Related]
16. Reformulation of an extant ATPase active site to mimic ancestral GTPase activity reveals a nucleotide base requirement for function. Updegrove TB; Harke J; Anantharaman V; Yang J; Gopalan N; Wu D; Piszczek G; Stevenson DM; Amador-Noguez D; Wang JD; Aravind L; Ramamurthi KS Elife; 2021 Mar; 10():. PubMed ID: 33704064 [TBL] [Abstract][Full Text] [Related]
17. Real-time in vitro measurement of intrinsic and Ras GAP-mediated GTP hydrolysis. Shutes A; Der CJ Methods Enzymol; 2006; 407():9-22. PubMed ID: 16757310 [TBL] [Abstract][Full Text] [Related]
18. Exchange factors, effectors, GAPs and motor proteins: common thermodynamic and kinetic principles for different functions. Goody RS; Hofmann-Goody W Eur Biophys J; 2002 Jul; 31(4):268-74. PubMed ID: 12122473 [TBL] [Abstract][Full Text] [Related]
19. FtsZ from Escherichia coli, Azotobacter vinelandii, and Thermotoga maritima--quantitation, GTP hydrolysis, and assembly. Lu C; Stricker J; Erickson HP Cell Motil Cytoskeleton; 1998; 40(1):71-86. PubMed ID: 9605973 [TBL] [Abstract][Full Text] [Related]
20. Characterization of an ecto-ATPase activity in Fonsecaea pedrosoi. Collopy-Junior I; Kneipp LF; da Silva FC; Rodrigues ML; Alviano CS; Meyer-Fernandes JR Arch Microbiol; 2006 Jun; 185(5):355-62. PubMed ID: 16528535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]