BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 9016815)

  • 1. Oxygen activation by cytochrome P450BM-3: effects of mutating an active site acidic residue.
    Yeom H; Sligar SG
    Arch Biochem Biophys; 1997 Jan; 337(2):209-16. PubMed ID: 9016815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical role of the residue size at position 87 in H2O2- dependent substrate hydroxylation activity and H2O2 inactivation of cytochrome P450BM-3.
    Li QS; Ogawa J; Shimizu S
    Biochem Biophys Res Commun; 2001 Feb; 280(5):1258-61. PubMed ID: 11162663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dithionite-supported hydroxylation of palmitic acid by cytochrome P450BM-3.
    Fang X; Halpert JR
    Drug Metab Dispos; 1996 Nov; 24(11):1282-5. PubMed ID: 8937865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single mutation in cytochrome P450 BM3 changes substrate orientation in a catalytic intermediate and the regiospecificity of hydroxylation.
    Oliver CF; Modi S; Sutcliffe MJ; Primrose WU; Lian LY; Roberts GC
    Biochemistry; 1997 Feb; 36(7):1567-72. PubMed ID: 9048540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain.
    Murataliev MB; Feyereisen R
    Biochemistry; 1996 Nov; 35(47):15029-37. PubMed ID: 8942669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thr268 in substrate binding and catalysis in P450BM-3.
    Truan G; Peterson JA
    Arch Biochem Biophys; 1998 Jan; 349(1):53-64. PubMed ID: 9439582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency.
    Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC
    J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P450BM-3: absolute configuration of the primary metabolites of palmitic acid.
    Truan G; Komandla MR; Falck JR; Peterson JA
    Arch Biochem Biophys; 1999 Jun; 366(2):192-8. PubMed ID: 10356283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of key active-site residues in flavocytochrome P450 BM3.
    Noble MA; Miles CS; Chapman SK; Lysek DA; MacKay AC; Reid GA; Hanzlik RP; Munro AW
    Biochem J; 1999 Apr; 339 ( Pt 2)(Pt 2):371-9. PubMed ID: 10191269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of Thr268 in oxygen activation of cytochrome P450BM-3.
    Yeom H; Sligar SG; Li H; Poulos TL; Fulco AJ
    Biochemistry; 1995 Nov; 34(45):14733-40. PubMed ID: 7578081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Obligatory intermolecular electron-transfer from FAD to FMN in dimeric P450BM-3.
    Kitazume T; Haines DC; Estabrook RW; Chen B; Peterson JA
    Biochemistry; 2007 Oct; 46(42):11892-901. PubMed ID: 17902705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glu-320 and Asp-323 are determinants of the CYP4A1 hydroxylation regiospecificity and resistance to inactivation by 1-aminobenzotriazole.
    Dierks EA; Davis SC; Ortiz de Montellano PR
    Biochemistry; 1998 Feb; 37(7):1839-47. PubMed ID: 9485309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3.
    Peters MW; Meinhold P; Glieder A; Arnold FH
    J Am Chem Soc; 2003 Nov; 125(44):13442-50. PubMed ID: 14583039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of substrates at the surface of P450s can greatly enhance substrate potency.
    Hegde A; Haines DC; Bondlela M; Chen B; Schaffer N; Tomchick DR; Machius M; Nguyen H; Chowdhary PK; Stewart L; Lopez C; Peterson JA
    Biochemistry; 2007 Dec; 46(49):14010-7. PubMed ID: 18004886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The kinetic and spectral characterization of the E. coli-expressed mammalian CYP4A7: cytochrome b5 effects vary with substrate.
    Loughran PA; Roman LJ; Miller RT; Masters BS
    Arch Biochem Biophys; 2001 Jan; 385(2):311-21. PubMed ID: 11368012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual role of human cytochrome P450 3A4 residue Phe-304 in substrate specificity and cooperativity.
    Domanski TL; He YA; Harlow GR; Halpert JR
    J Pharmacol Exp Ther; 2000 May; 293(2):585-91. PubMed ID: 10773032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium.
    Gustafsson MC; Roitel O; Marshall KR; Noble MA; Chapman SK; Pessegueiro A; Fulco AJ; Cheesman MR; von Wachenfeldt C; Munro AW
    Biochemistry; 2004 May; 43(18):5474-87. PubMed ID: 15122913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.