BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 9017209)

  • 1. Monitoring the myosin ATPase reaction using a sensitive fluorescent probe: pyrene-labeled ATP.
    Hiratsuka T
    Biophys J; 1997 Feb; 72(2 Pt 1):843-9. PubMed ID: 9017209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic and spectroscopic characterization of fluorescent ribose-modified ATP analogs upon interaction with skeletal muscle myosin subfragment 1.
    Conibear PB; Jeffreys DS; Seehra CK; Eaton RJ; Bagshaw CR
    Biochemistry; 1996 Feb; 35(7):2299-308. PubMed ID: 8652570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism for coupling free energy in ATPase to the myosin active site.
    Park S; Ajtai K; Burghardt TP
    Biochemistry; 1997 Mar; 36(11):3368-72. PubMed ID: 9116016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactions of 1-N6-ethenoadenosine nucleotides with myosin subfragment 1 and acto-subfragment 1 of skeletal and smooth muscle.
    Rosenfeld SS; Taylor EW
    J Biol Chem; 1984 Oct; 259(19):11920-9. PubMed ID: 6480589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prodan fluorescence reflects differences in nucleotide-induced conformational states in the myosin head and allows continuous visualization of the ATPase reactions.
    Hiratsuka T
    Biochemistry; 1998 May; 37(20):7167-76. PubMed ID: 9585528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational changes in the 23-kilodalton NH2-terminal peptide segment of myosin ATPase associated with ATP hydrolysis.
    Hiratsuka T
    J Biol Chem; 1990 Nov; 265(31):18786-90. PubMed ID: 2146263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of a new fluorescent ATP analogue with skeletal muscle myosin subfragment-1.
    Maruta S; Mizukura Y; Chaen S
    J Biochem; 2002 Jun; 131(6):905-11. PubMed ID: 12038988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate.
    White HD; Belknap B; Webb MR
    Biochemistry; 1997 Sep; 36(39):11828-36. PubMed ID: 9305974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the interaction of myosin with ATP analogues having the syn conformation with respect to the adenine-ribose bond.
    Maruta S; Ohki T; Kambara T; Ikebe M
    Eur J Biochem; 1998 Aug; 256(1):229-37. PubMed ID: 9746368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loop I can modulate ADP affinity, ATPase activity, and motility of different scallop myosins. Transient kinetic analysis of S1 isoforms.
    Kurzawa-Goertz SE; Perreault-Micale CL; Trybus KM; Szent-Györgyi AG; Geeves MA
    Biochemistry; 1998 May; 37(20):7517-25. PubMed ID: 9585566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoaffinity ADP analogs as covalently attached reporter groups of the active site of myosin subfragment 1.
    Luo Y; Wang D; Cremo CR; Pate E; Cooke R; Yount RG
    Biochemistry; 1995 Feb; 34(6):1978-87. PubMed ID: 7849056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of stress in the active site of myosin accompanied by conformational changes in transient state intermediate complexes using photoaffinity labeling and 19F-NMR spectroscopy.
    Maruta S; Henry GD; Ohki T; Kambara T; Sykes BD; Ikebe M
    Eur J Biochem; 1998 Mar; 252(3):520-9. PubMed ID: 9546669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative single-molecule and ensemble myosin enzymology: sulfoindocyanine ATP and ADP derivatives.
    Oiwa K; Eccleston JF; Anson M; Kikumoto M; Davis CT; Reid GP; Ferenczi MA; Corrie JE; Yamada A; Nakayama H; Trentham DR
    Biophys J; 2000 Jun; 78(6):3048-71. PubMed ID: 10827983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myosin subfragment 1 activates ATP hydrolysis on Mg(2+)-G-actin.
    Kasprzak AA
    Biochemistry; 1994 Oct; 33(41):12456-62. PubMed ID: 7918468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational changes in the unique loops bordering the ATP binding cleft of skeletal muscle myosin mediate energy transduction.
    Maruta S; Homma K
    J Biochem; 2000 Oct; 128(4):695-704. PubMed ID: 11011153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of divalent cations on the formation and stability of myosin subfragment 1-ADP-phosphate analog complexes.
    Peyser YM; Ben-Hur M; Werber MM; Muhlrad A
    Biochemistry; 1996 Apr; 35(14):4409-16. PubMed ID: 8605190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution structure of myosin-ADP-MgFn ternary complex by fluorescent probes and small-angle synchrotron X-ray scattering.
    Maruta S; Aihara T; Uyehara Y; Homma K; Sugimoto Y; Wakabayashi K
    J Biochem; 2000 Oct; 128(4):687-94. PubMed ID: 11011152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of metal cations on the conformation of myosin subfragment-1-ADP-phosphate analog complexes: a near-UV circular dichroism study.
    Peyser YM; Ajtai K; Werber MM; Burghardt TP; Muhlrad A
    Biochemistry; 1997 Apr; 36(17):5170-8. PubMed ID: 9136878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quenching of fluorescent nucleotides bound to myosin: a probe of the active-site conformation.
    Franks-Skiba K; Hwang T; Cooke R
    Biochemistry; 1994 Oct; 33(42):12720-8. PubMed ID: 7918498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The second step of ATP binding to DnaK induces peptide release.
    Theyssen H; Schuster HP; Packschies L; Bukau B; Reinstein J
    J Mol Biol; 1996 Nov; 263(5):657-70. PubMed ID: 8947566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.