BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 901784)

  • 1. Intra- and intermolecular cross-linking of membrane proteins in intact erythrocytes and ghosts by SH-oxidizing agents.
    Haest CW; Kamp D; Plasa G; Deuticke B
    Biochim Biophys Acta; 1977 Sep; 469(2):226-30. PubMed ID: 901784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete exchange of phosphatidylcholine from intact erythrocytes after protein crosslinking.
    Franck PF; Roelofsen B; Op den Kamp JA
    Biochim Biophys Acta; 1982 Apr; 687(1):105-8. PubMed ID: 7074104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane.
    Haest CW; Plasa G; Kamp D; Deuticke B
    Biochim Biophys Acta; 1978 May; 509(1):21-32. PubMed ID: 647006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of aqueous pores in the human erythrocyte membrane after oxidative cross-linking of spectrin by diamide.
    Deuticke B; Poser B; Lütkemeier P; Haest CW
    Biochim Biophys Acta; 1983 Jun; 731(2):196-210. PubMed ID: 6849917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of protein phosphorylation and induction of protein cross-linking in erythrocyte membranes by diamide.
    Hosey MM; Plut DA; Tao M
    Biochim Biophys Acta; 1978 Jan; 506(2):211-20. PubMed ID: 620030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The spectrin phosphorylation reaction in human erythrocytes.
    Greenquist AC; Wyatt JL; Guatelli JC; Shohet SB
    Prog Clin Biol Res; 1978; 20():1-24. PubMed ID: 652813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective alteration of erythrocyte deformabiliby by SH-reagents: evidence for an involvement of spectrin in membrane shear elasticity.
    Fischer TM; Haest CW; Stöhr M; Kamp D; Deuticke B
    Biochim Biophys Acta; 1978 Jul; 510(2):270-82. PubMed ID: 667045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation of intramembrane particles in erythrocyte membranes treated with diamide.
    Kurantsin-Mills J; Lessin LS
    Biochim Biophys Acta; 1981 Feb; 641(1):129-37. PubMed ID: 7213709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of diamide and glutathione on the uptake of glucose by human erythrocytes.
    Leoncini G; Maresca M
    Ital J Biochem; 1983; 32(2):102-10. PubMed ID: 6629727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of disulfide bonds between glutathione and membrane SH groups in human erythrocytes.
    Haest CW; Kamp D; Deuticke B
    Biochim Biophys Acta; 1979 Nov; 557(2):363-71. PubMed ID: 497187
    [No Abstract]   [Full Text] [Related]  

  • 11. Membrane skeletal protein structure and interactions in human erythrocytes after their treatment with diamide and calcium.
    Kumar J; Gupta CM
    Indian J Biochem Biophys; 1992 Apr; 29(2):123-7. PubMed ID: 1398703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alteration of rheological properties of human erythrocytes by crosslinking of membrane proteins.
    Maeda N; Kon K; Imaizumi K; Sekiya M; Shiga T
    Biochim Biophys Acta; 1983 Oct; 735(1):104-12. PubMed ID: 6626542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of mild diamide oxidation on the structure and function of human erythrocyte spectrin.
    Becker PS; Cohen CM; Lux SE
    J Biol Chem; 1986 Apr; 261(10):4620-8. PubMed ID: 3957910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemolysis of human erythrocytes under hydrostatic pressure is suppressed by cross-linking of membrane proteins.
    Kitajima H; Yamaguchi T; Kimoto E
    J Biochem; 1990 Dec; 108(6):1057-62. PubMed ID: 2150965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of copper and copper. o-phenanthroline complex on the intact human erythrocytes.
    Hiroshige Y
    Tohoku J Exp Med; 1980 Apr; 130(4):385-402. PubMed ID: 7466797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased survival in vivo of diamide-incubated dog erythrocytes. A model of oxidant-induced hemolysis.
    Johnson GJ; Allen DW; Flynn TP; Finkel B; White JG
    J Clin Invest; 1980 Nov; 66(5):955-61. PubMed ID: 7430352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Further characterization of the erythrocyte membrane protein abnormality in megaloblastic anemia.
    Ballas SK; Pielichowski HJ; Stoll DB
    J Med; 1982; 13(1-2):15-34. PubMed ID: 6956651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct involvement of spectrin thiols in maintaining erythrocyte membrane thermal stability and spectrin dimer self-association.
    Streichman S; Hertz E; Tatarsky I
    Biochim Biophys Acta; 1988 Jul; 942(2):333-40. PubMed ID: 3395616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemolysis of human erythrocytes with saponin affects the membrane structure.
    Baumann E; Stoya G; Völkner A; Richter W; Lemke C; Linss W
    Acta Histochem; 2000 Feb; 102(1):21-35. PubMed ID: 10726162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of cytoskeletal proteins in the barrier function of the human erythrocyte membrane. I. Impairment of resealing and formation of aqueous pores in the ghost membrane after modification of SH groups.
    Klonk S; Deuticke B
    Biochim Biophys Acta; 1992 Apr; 1106(1):126-36. PubMed ID: 1581324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.