These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9018045)

  • 21. Successive inactivation of the force-generating units of sodium-driven bacterial flagellar motors by a photoreactive amiloride analog.
    Muramoto K; Sugiyama S; Cragoe EJ; Imae Y
    J Biol Chem; 1994 Feb; 269(5):3374-80. PubMed ID: 8106377
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amiloride, a specific inhibitor for the Na+-driven flagellar motors of alkalophilic Bacillus.
    Sugiyama S; Cragoe EJ; Imae Y
    J Biol Chem; 1988 Jun; 263(17):8215-9. PubMed ID: 3372520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of second generation amiloride analogs as therapy for cystic fibrosis lung disease.
    Hirsh AJ; Sabater JR; Zamurs A; Smith RT; Paradiso AM; Hopkins S; Abraham WM; Boucher RC
    J Pharmacol Exp Ther; 2004 Dec; 311(3):929-38. PubMed ID: 15273255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sodium-driven motor of the polar flagellum in marine bacteria Vibrio.
    Li N; Kojima S; Homma M
    Genes Cells; 2011 Oct; 16(10):985-99. PubMed ID: 21895888
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction of PomB with the third transmembrane segment of PomA in the Na+-driven polar flagellum of Vibrio alginolyticus.
    Yakushi T; Maki S; Homma M
    J Bacteriol; 2004 Aug; 186(16):5281-91. PubMed ID: 15292129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flagellar rotation in the archaeon Halobacterium salinarum depends on ATP.
    Streif S; Staudinger WF; Marwan W; Oesterhelt D
    J Mol Biol; 2008 Dec; 384(1):1-8. PubMed ID: 18786541
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A conserved residue, PomB-F22, in the transmembrane segment of the flagellar stator complex, has a critical role in conducting ions and generating torque.
    Terauchi T; Terashima H; Kojima S; Homma M
    Microbiology (Reading); 2011 Aug; 157(Pt 8):2422-2432. PubMed ID: 21636648
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium.
    Asai Y; Kojima S; Kato H; Nishioka N; Kawagishi I; Homma M
    J Bacteriol; 1997 Aug; 179(16):5104-10. PubMed ID: 9260952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cloning and characterization of motY, a gene coding for a component of the sodium-driven flagellar motor in Vibrio alginolyticus.
    Okunishi I; Kawagishi I; Homma M
    J Bacteriol; 1996 Apr; 178(8):2409-15. PubMed ID: 8636046
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intracellular Na+ kinetically interferes with the rotation of the Na(+)-driven flagellar motors of Vibrio alginolyticus.
    Yoshida S; Sugiyama S; Hojo Y; Tokuda H; Imae Y
    J Biol Chem; 1990 Nov; 265(33):20346-50. PubMed ID: 2243095
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Induction of the lateral flagellar system of Vibrio shilonii is an early event after inhibition of the sodium ion flux in the polar flagellum.
    González Y; Camarena L; Dreyfus G
    Can J Microbiol; 2015 Mar; 61(3):183-91. PubMed ID: 25639364
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell-free synthesis of the torque-generating membrane proteins, PomA and PomB, of the Na+-driven flagellar motor in Vibrio alginolyticus.
    Terashima H; Abe-Yoshizumi R; Kojima S; Homma M
    J Biochem; 2008 Nov; 144(5):635-42. PubMed ID: 18776205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation of the polar and lateral flagellum-defective mutants in Vibrio alginolyticus and identification of their flagellar driving energy sources.
    Kawagishi I; Maekawa Y; Atsumi T; Homma M; Imae Y
    J Bacteriol; 1995 Sep; 177(17):5158-60. PubMed ID: 7665498
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Random mutagenesis of the pomA gene encoding a putative channel component of the Na(+)-driven polar flagellar motor of Vibrio alginolyticus.
    Kojima S; Kuroda M; Kawagishi I; Homma M
    Microbiology (Reading); 1999 Jul; 145 ( Pt 7)():1759-1767. PubMed ID: 10439415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional reconstitution of the Na(+)-driven polar flagellar motor component of Vibrio alginolyticus.
    Sato K; Homma M
    J Biol Chem; 2000 Feb; 275(8):5718-22. PubMed ID: 10681557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus.
    Kusumoto A; Kamisaka K; Yakushi T; Terashima H; Shinohara A; Homma M
    J Biochem; 2006 Jan; 139(1):113-21. PubMed ID: 16428326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Torque-speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus.
    Sowa Y; Hotta H; Homma M; Ishijima A
    J Mol Biol; 2003 Apr; 327(5):1043-51. PubMed ID: 12662929
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and characterization of an amiloride-resistant mutant of Methanothermobacter thermautotrophicus possessing a defective Na+/H+ antiport.
    Surín S; Cubonová L; Majerník AI; McDermott P; Chong JP; Smigán P
    FEMS Microbiol Lett; 2007 Apr; 269(2):301-8. PubMed ID: 17286571
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deletion analysis of the carboxyl-terminal region of the PomB component of the vibrio alginolyticus polar flagellar motor.
    Yakushi T; Hattori N; Homma M
    J Bacteriol; 2005 Jan; 187(2):778-84. PubMed ID: 15629950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Properties of motility in Bacillus subtilis powered by the H+-coupled MotAB flagellar stator, Na+-coupled MotPS or hybrid stators MotAS or MotPB.
    Ito M; Terahara N; Fujinami S; Krulwich TA
    J Mol Biol; 2005 Sep; 352(2):396-408. PubMed ID: 16095621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.