BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 9018499)

  • 1. The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy.
    Adams GR; Haddad F
    J Appl Physiol (1985); 1996 Dec; 81(6):2509-16. PubMed ID: 9018499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats.
    Adams GR; McCue SA
    J Appl Physiol (1985); 1998 May; 84(5):1716-22. PubMed ID: 9572822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat shock protein accumulation and heat shock transcription factor activation in rat skeletal muscle during compensatory hypertrophy.
    Locke M
    Acta Physiol (Oxf); 2008 Mar; 192(3):403-11. PubMed ID: 17973955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time course of changes in markers of myogenesis in overloaded rat skeletal muscles.
    Adams GR; Haddad F; Baldwin KM
    J Appl Physiol (1985); 1999 Nov; 87(5):1705-12. PubMed ID: 10562612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ANG II is required for optimal overload-induced skeletal muscle hypertrophy.
    Gordon SE; Davis BS; Carlson CJ; Booth FW
    Am J Physiol Endocrinol Metab; 2001 Jan; 280(1):E150-9. PubMed ID: 11120669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local changes of IGF-I mRNA, GH receptor mRNA, and fiber size in rat plantaris muscle following compensatory overload.
    Yamaguchi A; Ikeda Y; Hirai T; Fujikawa T; Morita I
    Jpn J Physiol; 2003 Feb; 53(1):53-60. PubMed ID: 12689358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of radiation on satellite cell activity and protein expression in overloaded mammalian skeletal muscle.
    Phelan JN; Gonyea WJ
    Anat Rec; 1997 Feb; 247(2):179-88. PubMed ID: 9025997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat stress inhibits skeletal muscle hypertrophy.
    Frier BC; Locke M
    Cell Stress Chaperones; 2007; 12(2):132-41. PubMed ID: 17688192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle IGF-I Ea, MGF, and myostatin mRNA expressions after compensatory overload in hypophysectomized rats.
    Yamaguchi A; Fujikawa T; Shimada S; Kanbayashi I; Tateoka M; Soya H; Takeda H; Morita I; Matsubara K; Hirai T
    Pflugers Arch; 2006 Nov; 453(2):203-10. PubMed ID: 16941139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IGF-I, growth hormone, and/or exercise effects on non-weight-bearing soleus of hypophysectomized rats.
    Roy RR; Tri C; Grossman EJ; Talmadge RJ; Grindeland RE; Mukku VR; Edgerton VR
    J Appl Physiol (1985); 1996 Jul; 81(1):302-11. PubMed ID: 8828678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of IGF-I in follistatin-induced skeletal muscle hypertrophy.
    Barbé C; Kalista S; Loumaye A; Ritvos O; Lause P; Ferracin B; Thissen JP
    Am J Physiol Endocrinol Metab; 2015 Sep; 309(6):E557-67. PubMed ID: 26219865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of the IGF-I system to prolonged undernutrition and its involvement in somatic and skeletal muscle growth retardation in rats.
    Gautsch TA; Kandl SM; Donovan SM; Layman DK
    Growth Dev Aging; 1998; 62(1-2):13-25. PubMed ID: 9666353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of insulin-like growth factor I, insulin-like growth factor binding proteins, and collagen mRNA in mechanically loaded plantaris tendon.
    Olesen JL; Heinemeier KM; Haddad F; Langberg H; Flyvbjerg A; Kjaer M; Baldwin KM
    J Appl Physiol (1985); 2006 Jul; 101(1):183-8. PubMed ID: 16782835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A growth stimulus is needed for IGF-1 to induce skeletal muscle hypertrophy in vivo.
    Shavlakadze T; Chai J; Maley K; Cozens G; Grounds G; Winn N; Rosenthal N; Grounds MD
    J Cell Sci; 2010 Mar; 123(Pt 6):960-71. PubMed ID: 20179101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional regulation of IGF-I expression in skeletal muscle.
    McCall GE; Allen DL; Haddad F; Baldwin KM
    Am J Physiol Cell Physiol; 2003 Oct; 285(4):C831-9. PubMed ID: 12773315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth hormone, IGF-I, and exercise effects on non-weight-bearing fast muscles of hypophysectomized rats.
    Grossman EJ; Grindeland RE; Roy RR; Talmadge RJ; Evans J; Edgerton VR
    J Appl Physiol (1985); 1997 Nov; 83(5):1522-30. PubMed ID: 9375315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between Ribosome Biogenesis and the Magnitude of Hypertrophy in Overloaded Skeletal Muscle.
    Nakada S; Ogasawara R; Kawada S; Maekawa T; Ishii N
    PLoS One; 2016; 11(1):e0147284. PubMed ID: 26824605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viral expression of insulin-like growth factor-I enhances muscle hypertrophy in resistance-trained rats.
    Lee S; Barton ER; Sweeney HL; Farrar RP
    J Appl Physiol (1985); 2004 Mar; 96(3):1097-104. PubMed ID: 14766764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth.
    DeVol DL; Rotwein P; Sadow JL; Novakofski J; Bechtel PJ
    Am J Physiol; 1990 Jul; 259(1 Pt 1):E89-95. PubMed ID: 2372054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term insulin-like growth factor-I expression in skeletal muscles attenuates the enhanced in vitro proliferation ability of the resident satellite cells in transgenic mice.
    Chakravarthy MV; Fiorotto ML; Schwartz RJ; Booth FW
    Mech Ageing Dev; 2001 Sep; 122(12):1303-20. PubMed ID: 11438121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.