BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 901915)

  • 1. Kinetics of reactivation of rabbit muscle aldolase after denaturation and dissociation in various solvent media.
    Gerschitz J; Rudolph R; Jaenicke R
    Biophys Struct Mech; 1977 Sep; 3(3-4):291-302. PubMed ID: 901915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of refolding and reactivation of rabbit-muscle aldolase after acid dissociation.
    Rudolph R; Engelhard M; Jaenicke R
    Eur J Biochem; 1976 Aug; 67(2):455-62. PubMed ID: 986942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of rabbit muscle aldolase after dissociation and denaturation at alkaline pH.
    Rudolph R; Haselbeck A; Knorr F; Jaenicke R
    Hoppe Seylers Z Physiol Chem; 1978 Aug; 359(8):867-71. PubMed ID: 30685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equilibrium studies on the refolding and reactivation of rabbit-muscle aldolase after acid dissociation.
    Engelhard M; Rudolph R; Jaenicke R
    Eur J Biochem; 1976 Aug; 67(2):447-53. PubMed ID: 9280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refolding and reactivation of liver alcohol dehydrogenase after dissociation and denaturation in 6M guanidine hydrochloride.
    Gerschitz J; Rudolph R; Jaenicke R
    Eur J Biochem; 1978 Jul; 87(3):591-9. PubMed ID: 210018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-dependent changes of protein structure. The properties of young and old rabbit aldolase are restored after reversible denaturation.
    Demchenko AP; Orlovska NN; Sukhomudrenko AG
    Exp Gerontol; 1983; 18(6):437-46. PubMed ID: 6673989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic analysis of the reactivation of rabbit muscle aldolase after denaturation with guanidine-HCL.
    Rudolph R; Westhof E; Jaenicke R
    FEBS Lett; 1977 Feb; 73(2):204-6. PubMed ID: 402289
    [No Abstract]   [Full Text] [Related]  

  • 8. Reversible unfolding and refolding behavior of a monomeric aldolase from Staphylococcus aureus.
    Rudolph R; Siebendritt R; Kiefhaber T
    Protein Sci; 1992 May; 1(5):654-66. PubMed ID: 1304364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Further characterization of the reassembly of creatine kinase and effect of substrate.
    Grossman SH; Mixon D
    Arch Biochem Biophys; 1985 Feb; 236(2):797-806. PubMed ID: 3970537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renaturation of glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides after denaturation in 4 M guanidine hydrochloride: kinetics of aggregation and reactivation.
    Plomer JJ; Gafni A
    Biochim Biophys Acta; 1993 Apr; 1163(1):89-96. PubMed ID: 8476934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and molecular properties of citraconyl-aldolase. The reversible denaturation and hybridization of the native and modified enzymes.
    Gibbons I; Perham RN
    Biochem J; 1974 May; 139(2):331-42. PubMed ID: 4447614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A kinetic study of the subunit dissociation and reassembly of rabbit muscle phosphofructokinase.
    Parr GR; Hammes GG
    Biochemistry; 1976 Feb; 15(4):857-62. PubMed ID: 129154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical characterization of a fast refolding monomeric class I fructose-1,6-bisphosphate aldolase from Staphylococcus aureus.
    Rudolph R; Bohrer M; Fischer S
    Eur J Biochem; 1983 Mar; 131(2):383-6. PubMed ID: 6832156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renaturation of acid-denatured rabbit muscle aldolase. Existence and properties of a stable monomeric intermediate.
    Vimard C; Orsini G; Goldberg ME
    Eur J Biochem; 1975 Feb; 51(2):521-7. PubMed ID: 1171011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Denaturation-renaturation of the fibrin-stabilizing factor XIII a-chain isolated from human placenta. Properties of the native and reconstituted protein.
    Rinas U; Risse B; Jaenicke R; Abel KJ; Zettlmeissl G
    Biol Chem Hoppe Seyler; 1990 Jan; 371(1):49-56. PubMed ID: 1969740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro assembly of aldolase. Kinetics of refolding, subunit reassociation, and reactivation.
    Teipel JW
    Biochemistry; 1972 Oct; 11(22):4100-7. PubMed ID: 4673644
    [No Abstract]   [Full Text] [Related]  

  • 17. Rate and equilibrium constants for protein unfolding and refolding determined by hydrogen exchange-mass spectrometry.
    Deng Y; Smith DL
    Anal Biochem; 1999 Dec; 276(2):150-60. PubMed ID: 10603237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical trapping of complexes of dihydroxyacetone phosphate with muscle fructose-1,6-bisphosphate aldolase.
    Kuo DJ; Rose IA
    Biochemistry; 1985 Jul; 24(15):3947-52. PubMed ID: 4052377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quaternary structure of aldolase leads to differences in its folding and unfolding intermediates.
    Pan H; Smith DL
    Biochemistry; 2003 May; 42(19):5713-21. PubMed ID: 12741828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on protein subunits. 3. Kinetic evidence for the presence of active subunits during the renaturation of muscle aldolase.
    Chan WW; Mort JS; Chong DK; Macdonald PD
    J Biol Chem; 1973 Apr; 248(8):2778-84. PubMed ID: 4697391
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.