These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 901921)

  • 1. The temperature-induced conformational transition of immobilized chymotrypsinogen.
    Brynda E; Bleha M
    Biopolymers; 1977 Sep; 16(9):1945-55. PubMed ID: 901921
    [No Abstract]   [Full Text] [Related]  

  • 2. Structural transitions of soluble and immobilized chymotrypsinogen A in urea and guanidinium chloride as measured by fluorescence.
    Swaisgood HE; Janolino VG; Horton HR
    Arch Biochem Biophys; 1978 Nov; 191(1):259-68. PubMed ID: 736565
    [No Abstract]   [Full Text] [Related]  

  • 3. Immobilization as a means of investigating the acquisition of tertiary structure in chymotrypsinogen.
    Horton HR; Swaisgood HE
    Methods Enzymol; 1976; 44():516-26. PubMed ID: 15189
    [No Abstract]   [Full Text] [Related]  

  • 4. [Effect of temperature on chymotrypsinogen A hydration in a dynamic system].
    Khurgin IuI; Sherman FB; Tusupkaliev U
    Mol Biol (Mosk); 1978; 12(3):572-9. PubMed ID: 661824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic effect of sulfhydryl oxidase on the formation of three-dimensional structure in chymotrypsinogen A.
    Janolino VG; Sliwkowski MX; Swaisgood HE; Horton HR
    Arch Biochem Biophys; 1978 Nov; 191(1):269-77. PubMed ID: 736566
    [No Abstract]   [Full Text] [Related]  

  • 6. Effects of immobilization onto aluminum hydroxide particles on the thermally induced conformational behavior of three model proteins.
    Bai S; Dong A
    Int J Biol Macromol; 2009 Jul; 45(1):80-5. PubMed ID: 19397921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The native and the heat-induced denatured states of alpha-chymotrypsinogen A: thermodynamic and spectroscopic studies.
    Chalikian TV; Völker J; Anafi D; Breslauer KJ
    J Mol Biol; 1997 Nov; 274(2):237-52. PubMed ID: 9398530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Position of the fluorescence spectrum maxima of external tryptophan residues in proteins.
    Vedenkina NS; Ivkova MN; Burshtein EA
    Mol Biol; 1972; 6(4):375-7. PubMed ID: 4573032
    [No Abstract]   [Full Text] [Related]  

  • 9. Connective between parameters of fluorescence and protein structure.
    Ostashevskii IY
    Mol Biol; 1972; 6(1):1-9. PubMed ID: 4564001
    [No Abstract]   [Full Text] [Related]  

  • 10. [Reversible conformational transitions of proteins in the region of physiological temperature].
    Troitskiĭ GV; Zav'ialov VP; Kiriukhin IF
    Biokhimiia; 1971; 36(6):1107-14. PubMed ID: 4110432
    [No Abstract]   [Full Text] [Related]  

  • 11. The conformational state of methionine residues in the temperature-controlled transition of chymotrypsinogen and -chymotrypsin.
    Wasi S; Hofmann T
    Can J Biochem; 1973 Jun; 51(6):797-805. PubMed ID: 4736822
    [No Abstract]   [Full Text] [Related]  

  • 12. Crystal structure of an oligomer of proteolytic zymogens: detailed conformational analysis of the bovine ternary complex and implications for their activation.
    Gomis-Rüth FX; Gómez-Ortiz M; Vendrell J; Ventura S; Bode W; Huber R; Avilés FX
    J Mol Biol; 1997 Jun; 269(5):861-80. PubMed ID: 9223647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromophoric labels in proteins. I. Optical and luminescent properties of nitrochymotrypsin and nitrochymotrypsinogen.
    Surovaya AN; Slobodyanskaya EM; Kozlov LV; Kogan GA; Antonov VK
    Mol Biol; 1972; 6(1):85-90. PubMed ID: 5086744
    [No Abstract]   [Full Text] [Related]  

  • 14. [Effect of temperature on intramolecular dynamics and conformational state of bacterial alkaline phosphatase].
    Mazhul' VM; Kananovich SZh
    Biofizika; 2006; 51(3):418-23. PubMed ID: 16808339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study of conformation transitions in proteins by tryptophan fluorescence and phosphorescence at low temperatures].
    Permiakov EA; Deĭkus GIu
    Mol Biol (Mosk); 1995; 29(2):339-44. PubMed ID: 7783738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-native aggregation of alpha-chymotrypsinogen occurs through nucleation and growth with competing nucleus sizes and negative activation energies.
    Andrews JM; Roberts CJ
    Biochemistry; 2007 Jun; 46(25):7558-71. PubMed ID: 17530865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature studies of glyceraldehyde-3-phosphate dehydrogenase binding to liposomes using fluorescence technique.
    Michalak K; Gutowicz J; Modrzycka T
    Gen Physiol Biophys; 1992 Dec; 11(6):545-54. PubMed ID: 1292953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational fluctuations in alpha-chymotrypsinogen A powders.
    Fucaloro AF; Forster LS
    Photochem Photobiol; 1985 Jan; 41(1):91-3. PubMed ID: 3983245
    [No Abstract]   [Full Text] [Related]  

  • 19. How deep is the potential well confining a protein in a specific conformation? A single-molecule study on temperature dependence of conformational change between 5 and 18 K.
    Oikawa H; Fujiyoshi S; Dewa T; Nango M; Matsushita M
    J Am Chem Soc; 2008 Apr; 130(14):4580-1. PubMed ID: 18345671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of temperature and lipid on the conformational transition of gramicidin A in lipid vesicles.
    Lin TH; Huang HB; Wei HA; Shiao SH; Chen YC
    Biopolymers; 2005 Jul; 78(4):179-86. PubMed ID: 15765548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.