BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 9019484)

  • 1. Resorption of, and bone formation from, new beta-tricalcium phosphate-monocalcium phosphate cements: an in vivo study.
    Ohura K; Bohner M; Hardouin P; Lemaître J; Pasquier G; Flautre B
    J Biomed Mater Res; 1996 Feb; 30(2):193-200. PubMed ID: 9019484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical characterization of a biodegradable calcium phosphate hydraulic cement: a comparison with porous biphasic calcium phosphate ceramics.
    Ikenaga M; Hardouin P; Lemaître J; Andrianjatovo H; Flautre B
    J Biomed Mater Res; 1998 Apr; 40(1):139-44. PubMed ID: 9511108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Healing of segmental bone defects in rats induced by a beta-TCP-MCPM cement combined with rhBMP-2.
    Ohura K; Hamanishi C; Tanaka S; Matsuda N
    J Biomed Mater Res; 1999 Feb; 44(2):168-75. PubMed ID: 10397918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel bioactive composite bone cements based on the beta-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system.
    Huan Z; Chang J
    Acta Biomater; 2009 May; 5(4):1253-64. PubMed ID: 18996779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo evaluation of injectable calcium phosphate cement composed of Zn- and Si-incorporated β-tricalcium phosphate and monocalcium phosphate monohydrate for a critical sized defect of the rabbit femoral condyle.
    Paul K; Lee BY; Abueva C; Kim B; Choi HJ; Bae SH; Lee BT
    J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):260-271. PubMed ID: 26478465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium phosphate cements: action of setting regulators on the properties of the beta-tricalcium phosphate-monocalcium phosphate cements.
    Mirtchi AA; Lemaître J; Munting E
    Biomaterials; 1989 Nov; 10(9):634-8. PubMed ID: 2611315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-term implantation effects of a DCPD-based calcium phosphate cement.
    Frayssinet P; Gineste L; Conte P; Fages J; Rouquet N
    Biomaterials; 1998 Jun; 19(11-12):971-7. PubMed ID: 9692795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. beta-TCP/MCPM-based premixed calcium phosphate cements.
    Han B; Ma PW; Zhang LL; Yin YJ; Yao KD; Zhang FJ; Zhang YD; Li XL; Nie W
    Acta Biomater; 2009 Oct; 5(8):3165-77. PubMed ID: 19427931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron microscopic study on bone formation and bioresorption after implantation of beta-tricalcium phosphate in rabbit models.
    Chazono M; Tanaka T; Kitasato S; Kikuchi T; Marumo K
    J Orthop Sci; 2008 Nov; 13(6):550-5. PubMed ID: 19089543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium phosphate cements: study of the beta-tricalcium phosphate--monocalcium phosphate system.
    Mirtchi AA; Lemaitre J; Terao N
    Biomaterials; 1989 Sep; 10(7):475-80. PubMed ID: 2804235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone formation and bioresorption after implantation of injectable beta-tricalcium phosphate granules-hyaluronate complex in rabbit bone defects.
    Chazono M; Tanaka T; Komaki H; Fujii K
    J Biomed Mater Res A; 2004 Sep; 70(4):542-9. PubMed ID: 15307158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of interconnected pore forming α-tricalcium phosphate foam granules cement.
    Shariff KA; Tsuru K; Ishikawa K
    J Biomater Appl; 2016 Jan; 30(6):838-45. PubMed ID: 26329353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertical bone augmentation with granulated brushite cement set in glycolic acid.
    Mariño FT; Torres J; Tresguerres I; Jerez LB; Cabarcos EL
    J Biomed Mater Res A; 2007 Apr; 81(1):93-102. PubMed ID: 17109427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo study of a calcium phosphate cement consisting of alpha-tricalcium phosphate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide.
    Kurashina K; Kurita H; Kotani A; Takeuchi H; Hirano M
    Biomaterials; 1997 Jan; 18(2):147-51. PubMed ID: 9022962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histological and biomechanical studies of two bone colonizable cements in rabbits.
    Lu JX; About I; Stephan G; Van Landuyt P; Dejou J; Fiocchi M; Lemaître J; Proust JP
    Bone; 1999 Aug; 25(2 Suppl):41S-45S. PubMed ID: 10458273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of DCPD cement chemistry on degradation properties and cytocompatibility: comparison of MCPM/β-TCP and MCPM/HA formulations.
    Alge DL; Goebel WS; Chu TM
    Biomed Mater; 2013 Apr; 8(2):025010. PubMed ID: 23428798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman microspectrometry studies of brushite cement: in vivo evolution in a sheep model.
    Penel G; Leroy N; Van Landuyt P; Flautre B; Hardouin P; Lemaître J; Leroy G
    Bone; 1999 Aug; 25(2 Suppl):81S-84S. PubMed ID: 10458282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone colonization of beta-TCP granules incorporated in brushite cements.
    Flautre B; Maynou C; Lemaitre J; Van Landuyt P; Hardouin P
    J Biomed Mater Res; 2002; 63(4):413-7. PubMed ID: 12115749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microencapsulated rBMMSCs/calcium phosphate cement for bone formation in vivo.
    Wang J; Qiao P; Dong L; Li F; Xu T; Xie Q
    Biomed Mater Eng; 2014; 24(1):835-43. PubMed ID: 24211970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility and resorption of a brushite calcium phosphate cement.
    Theiss F; Apelt D; Brand B; Kutter A; Zlinszky K; Bohner M; Matter S; Frei C; Auer JA; von Rechenberg B
    Biomaterials; 2005 Jul; 26(21):4383-94. PubMed ID: 15701367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.