These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 9019484)

  • 1. Resorption of, and bone formation from, new beta-tricalcium phosphate-monocalcium phosphate cements: an in vivo study.
    Ohura K; Bohner M; Hardouin P; Lemaître J; Pasquier G; Flautre B
    J Biomed Mater Res; 1996 Feb; 30(2):193-200. PubMed ID: 9019484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical characterization of a biodegradable calcium phosphate hydraulic cement: a comparison with porous biphasic calcium phosphate ceramics.
    Ikenaga M; Hardouin P; Lemaître J; Andrianjatovo H; Flautre B
    J Biomed Mater Res; 1998 Apr; 40(1):139-44. PubMed ID: 9511108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Healing of segmental bone defects in rats induced by a beta-TCP-MCPM cement combined with rhBMP-2.
    Ohura K; Hamanishi C; Tanaka S; Matsuda N
    J Biomed Mater Res; 1999 Feb; 44(2):168-75. PubMed ID: 10397918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel bioactive composite bone cements based on the beta-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system.
    Huan Z; Chang J
    Acta Biomater; 2009 May; 5(4):1253-64. PubMed ID: 18996779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo evaluation of injectable calcium phosphate cement composed of Zn- and Si-incorporated β-tricalcium phosphate and monocalcium phosphate monohydrate for a critical sized defect of the rabbit femoral condyle.
    Paul K; Lee BY; Abueva C; Kim B; Choi HJ; Bae SH; Lee BT
    J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):260-271. PubMed ID: 26478465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium phosphate cements: action of setting regulators on the properties of the beta-tricalcium phosphate-monocalcium phosphate cements.
    Mirtchi AA; Lemaître J; Munting E
    Biomaterials; 1989 Nov; 10(9):634-8. PubMed ID: 2611315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-term implantation effects of a DCPD-based calcium phosphate cement.
    Frayssinet P; Gineste L; Conte P; Fages J; Rouquet N
    Biomaterials; 1998 Jun; 19(11-12):971-7. PubMed ID: 9692795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. beta-TCP/MCPM-based premixed calcium phosphate cements.
    Han B; Ma PW; Zhang LL; Yin YJ; Yao KD; Zhang FJ; Zhang YD; Li XL; Nie W
    Acta Biomater; 2009 Oct; 5(8):3165-77. PubMed ID: 19427931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron microscopic study on bone formation and bioresorption after implantation of beta-tricalcium phosphate in rabbit models.
    Chazono M; Tanaka T; Kitasato S; Kikuchi T; Marumo K
    J Orthop Sci; 2008 Nov; 13(6):550-5. PubMed ID: 19089543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium phosphate cements: study of the beta-tricalcium phosphate--monocalcium phosphate system.
    Mirtchi AA; Lemaitre J; Terao N
    Biomaterials; 1989 Sep; 10(7):475-80. PubMed ID: 2804235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone formation and bioresorption after implantation of injectable beta-tricalcium phosphate granules-hyaluronate complex in rabbit bone defects.
    Chazono M; Tanaka T; Komaki H; Fujii K
    J Biomed Mater Res A; 2004 Sep; 70(4):542-9. PubMed ID: 15307158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of interconnected pore forming α-tricalcium phosphate foam granules cement.
    Shariff KA; Tsuru K; Ishikawa K
    J Biomater Appl; 2016 Jan; 30(6):838-45. PubMed ID: 26329353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertical bone augmentation with granulated brushite cement set in glycolic acid.
    Mariño FT; Torres J; Tresguerres I; Jerez LB; Cabarcos EL
    J Biomed Mater Res A; 2007 Apr; 81(1):93-102. PubMed ID: 17109427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo study of a calcium phosphate cement consisting of alpha-tricalcium phosphate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide.
    Kurashina K; Kurita H; Kotani A; Takeuchi H; Hirano M
    Biomaterials; 1997 Jan; 18(2):147-51. PubMed ID: 9022962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histological and biomechanical studies of two bone colonizable cements in rabbits.
    Lu JX; About I; Stephan G; Van Landuyt P; Dejou J; Fiocchi M; Lemaître J; Proust JP
    Bone; 1999 Aug; 25(2 Suppl):41S-45S. PubMed ID: 10458273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of DCPD cement chemistry on degradation properties and cytocompatibility: comparison of MCPM/β-TCP and MCPM/HA formulations.
    Alge DL; Goebel WS; Chu TM
    Biomed Mater; 2013 Apr; 8(2):025010. PubMed ID: 23428798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman microspectrometry studies of brushite cement: in vivo evolution in a sheep model.
    Penel G; Leroy N; Van Landuyt P; Flautre B; Hardouin P; Lemaître J; Leroy G
    Bone; 1999 Aug; 25(2 Suppl):81S-84S. PubMed ID: 10458282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone colonization of beta-TCP granules incorporated in brushite cements.
    Flautre B; Maynou C; Lemaitre J; Van Landuyt P; Hardouin P
    J Biomed Mater Res; 2002; 63(4):413-7. PubMed ID: 12115749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microencapsulated rBMMSCs/calcium phosphate cement for bone formation in vivo.
    Wang J; Qiao P; Dong L; Li F; Xu T; Xie Q
    Biomed Mater Eng; 2014; 24(1):835-43. PubMed ID: 24211970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility and resorption of a brushite calcium phosphate cement.
    Theiss F; Apelt D; Brand B; Kutter A; Zlinszky K; Bohner M; Matter S; Frei C; Auer JA; von Rechenberg B
    Biomaterials; 2005 Jul; 26(21):4383-94. PubMed ID: 15701367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.