BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 9019546)

  • 21. A Na+/Ca2+ exchange mechanism in apical membrane vesicles of the retinal pigment epithelium.
    Fijisawa K; Ye J; Zadunaisky JA
    Curr Eye Res; 1993 Mar; 12(3):261-70. PubMed ID: 8482115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression and differential polarization of the reduced-folate transporter-1 and the folate receptor alpha in mammalian retinal pigment epithelium.
    Chancy CD; Kekuda R; Huang W; Prasad PD; Kuhnel JM; Sirotnak FM; Roon P; Ganapathy V; Smith SB
    J Biol Chem; 2000 Jul; 275(27):20676-84. PubMed ID: 10787414
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potassium conductances in cultured bovine and human retinal pigment epithelium.
    Hernandez EV; Hu JG; Frambach DA; Gallemore RP
    Invest Ophthalmol Vis Sci; 1995 Jan; 36(1):113-22. PubMed ID: 7822138
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accumulation of taurine by cultured retinal pigment epithelium of the rat.
    Edwards RB
    Invest Ophthalmol Vis Sci; 1977 Mar; 16(3):201-8. PubMed ID: 844977
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hepatic taurine transport: a Na+-dependent carrier on the basolateral plasma membrane.
    Bucuvalas JC; Goodrich AL; Suchy FJ
    Am J Physiol; 1987 Sep; 253(3 Pt 1):G351-8. PubMed ID: 3631271
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Na/H exchange mechanism in apical membrane vesicles of the retinal pigment epithelium.
    Zadunaisky JA; Kinne-Saffran E; Kinne R
    Invest Ophthalmol Vis Sci; 1989 Nov; 30(11):2332-40. PubMed ID: 2553638
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glutamate and taurine uptake by retinal pigment epithelium during rat development.
    Salceda R; Saldaña MR
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1993 Feb; 104(2):311-6. PubMed ID: 8098684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. K+ and Cl- transport mechanisms in bovine pigment epithelium that could modulate subretinal space volume and composition.
    Bialek S; Miller SS
    J Physiol; 1994 Mar; 475(3):401-17. PubMed ID: 8006825
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The relative roles of external taurine concentration and medium osmolality in the regulation of taurine transport in LLC-PK1 and MDCK cells.
    Jones DP; Miller LA; Chesney RW
    Pediatr Res; 1995 Feb; 37(2):227-32. PubMed ID: 7537366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lactate transport mechanisms at apical and basolateral membranes of bovine retinal pigment epithelium.
    Kenyon E; Yu K; La Cour M; Miller SS
    Am J Physiol; 1994 Dec; 267(6 Pt 1):C1561-73. PubMed ID: 7810597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calyculin A modulates the kinetic constants for the Na+-coupled taurine transport in Ehrlich ascites tumour cells.
    Mollerup J; Lambert IH
    Biochim Biophys Acta; 1998 May; 1371(2):335-44. PubMed ID: 9630712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of taurine transporter expression by NO in cultured human retinal pigment epithelial cells.
    Bridges CC; Ola MS; Prasad PD; El-Sherbeny A; Ganapathy V; Smith SB
    Am J Physiol Cell Physiol; 2001 Dec; 281(6):C1825-36. PubMed ID: 11698241
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The delayed basolateral membrane hyperpolarization of the bovine retinal pigment epithelium: mechanism of generation.
    Bialek S; Joseph DP; Miller SS
    J Physiol; 1995 Apr; 484 ( Pt 1)(Pt 1):53-67. PubMed ID: 7602526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transmembrane components of taurine flux across frog retinal pigment epithelium.
    Ostwald TJ; Steinberg RH
    Curr Eye Res; 1981; 1(8):437-43. PubMed ID: 6977432
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Basolateral transport of taurine in epithelial cells of isolated, perfused Mytilus californianus gills.
    Neufeld DS; Wright SH
    J Exp Biol; 1995 Feb; 198(Pt 2):465-73. PubMed ID: 7699315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The relationship between sodium and high-affinity taurine uptake in hypothalamic crude P2 synaptosomal preparations.
    Hanretta AT; Lombardini JB
    Neurochem Res; 1987 Aug; 12(8):705-13. PubMed ID: 3627359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carrier-mediated γ-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers.
    Nielsen CU; Carstensen M; Brodin B
    Eur J Pharm Biopharm; 2012 Jun; 81(2):458-62. PubMed ID: 22452873
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of an ex vivo model implication for carrier-mediated retinal drug delivery.
    Kansara V; Mitra AK
    Curr Eye Res; 2006 May; 31(5):415-26. PubMed ID: 16714233
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The saturation characteristics of glucose transport in bovine retinal pigment epithelium.
    To CH; Cheung KK; Chiu SH; Lai HM; Lung KS
    Yan Ke Xue Bao; 1998 Sep; 14(3):126-9. PubMed ID: 12580019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular characterization of taurine transport in bovine aortic endothelial cells.
    Qian X; Vinnakota S; Edwards C; Sarkar HK
    Biochim Biophys Acta; 2000 Dec; 1509(1-2):324-34. PubMed ID: 11118543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.