These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 9019548)

  • 1. Respiratory activity in the facial nucleus in an in vitro brainstem of tadpole, Rana catesbeiana.
    Liao G-S ; Kubin L; Galante RJ; Fishman AP; Pack AI
    J Physiol; 1996 Apr; 492 ( Pt 2)(Pt 2):529-44. PubMed ID: 9019548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of chloride-mediated inhibition in respiratory rhythmogenesis in an in vitro brainstem of tadpole, Rana catesbeiana.
    Galante RJ; Kubin L; Fishman AP; Pack AI
    J Physiol; 1996 Apr; 492 ( Pt 2)(Pt 2):545-58. PubMed ID: 9019549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fictive gill and lung ventilation in the pre- and postmetamorphic tadpole brain stem.
    Torgerson CS; Gdovin MJ; Remmers JE
    J Neurophysiol; 1998 Oct; 80(4):2015-22. PubMed ID: 9772257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fictively breathing tadpole brainstem preparation as a model for the development of respiratory pattern generation and central chemoreception.
    Gdovin MJ; Torgerson CS; Remmers JE
    Comp Biochem Physiol A Mol Integr Physiol; 1999 Nov; 124(3):275-86. PubMed ID: 10665380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the respiratory central pattern generator by chloride-dependent inhibition during development in the bullfrog (Rana catesbeiana).
    Broch L; Morales RD; Sandoval AV; Hedrick MS
    J Exp Biol; 2002 Apr; 205(Pt 8):1161-9. PubMed ID: 11919275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroresponsive properties and membrane potential trajectories of three types of inspiratory neurons in the newborn mouse brain stem in vitro.
    Rekling JC; Champagnat J; Denavit-SaubiƩ M
    J Neurophysiol; 1996 Feb; 75(2):795-810. PubMed ID: 8714653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of the respiratory response to hypoxia in the isolated brainstem of the bullfrog Rana catesbeiana.
    Winmill RE; Chen AK; Hedrick MS
    J Exp Biol; 2005 Jan; 208(Pt 2):213-22. PubMed ID: 15634841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of prevention of lung inflation on metamorphosis and respiration in the developing bullfrog tadpole, Rana catesbeiana.
    Gdovin MJ; Jackson VV; Zamora DA; Leiter JC
    J Exp Zool A Comp Exp Biol; 2006 Apr; 305(4):335-47. PubMed ID: 16493648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurorespiratory pattern of gill and lung ventilation in the decerebrate spontaneously breathing tadpole.
    Gdovin MJ; Torgerson CS; Remmers JE
    Respir Physiol; 1998 Aug; 113(2):135-46. PubMed ID: 9832232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural organization of the ventilatory activity in the frog, Rana catesbeiana. II.
    Kogo N; Remmers JE
    J Neurobiol; 1994 Sep; 25(9):1080-94. PubMed ID: 7815065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide changes its role as a modulator of respiratory motor activity during development in the bullfrog (Rana catesbeiana).
    Hedrick MS; Chen AK; Jessop KL
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Oct; 142(2):231-40. PubMed ID: 16023875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gap junction blockade with carbenoxolone differentially affects fictive breathing in larval and adult bullfrogs.
    Winmill RE; Hedrick MS
    Respir Physiol Neurobiol; 2003 Nov; 138(2-3):239-51. PubMed ID: 14609513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serotonergic modulation of respiratory motor output during tadpole development.
    Kinkead R; Belzile O; Gulemetova R
    J Appl Physiol (1985); 2002 Sep; 93(3):936-46. PubMed ID: 12183489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Location of central respiratory chemoreceptors in the developing tadpole.
    Torgerson CS; Gdovin MJ; Brandt R; Remmers JE
    Am J Physiol Regul Integr Comp Physiol; 2001 Apr; 280(4):R921-8. PubMed ID: 11247811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental changes in the modulation of respiratory rhythm generation by extracellular K+ in the isolated bullfrog brainstem.
    Winmill RE; Hedrick MS
    J Neurobiol; 2003 Jun; 55(3):278-87. PubMed ID: 12717698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiratory motoneuron properties during the transition from gill to lung breathing in the American bullfrog.
    Janes TA; Fournier S; Chamberland S; Funk GD; Kinkead R
    Am J Physiol Regul Integr Comp Physiol; 2019 Mar; 316(3):R281-R297. PubMed ID: 30601705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sites of respiratory rhythmogenesis during development in the tadpole.
    Torgerson CS; Gdovin MJ; Remmers JE
    Am J Physiol Regul Integr Comp Physiol; 2001 Apr; 280(4):R913-20. PubMed ID: 11247810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serotonergic modulation of respiratory rhythmogenesis and central chemoreception.
    Gdovin MJ; Zamora DA; Ravindran CR; Leiter JC
    Ethn Dis; 2010; 20(1 Suppl 1):S1-39-44. PubMed ID: 20521383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thyrotropin-releasing hormone (TRH) depolarizes a subset of inspiratory neurons in the newborn mouse brain stem in vitro.
    Rekling JC; Champagnat J; Denavit-SaubiƩ M
    J Neurophysiol; 1996 Feb; 75(2):811-9. PubMed ID: 8714654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noradrenergic modulation of respiratory motor output during tadpole development: Role of alpha-adrenoceptors.
    Fournier S; Kinkead R
    J Exp Biol; 2006 Sep; 209(Pt 18):3685-94. PubMed ID: 16943508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.