BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 9019717)

  • 1. An increase in [Ca2+]i activates basolateral chloride channels and inhibits apical sodium channels in frog skin epithelium.
    Brodin B; Rytved KA; Nielsen R
    Pflugers Arch; 1996; 433(1-2):16-25. PubMed ID: 9019717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for a Na+/Ca2+ exchange mechanism in frog skin epithelium.
    Madsen KH; Brodin B; Nielsen R
    Pflugers Arch; 1999 Jan; 437(2):175-81. PubMed ID: 9929556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maxi K+ channels co-localised with CFTR in the apical membrane of an exocrine gland acinus: possible involvement in secretion.
    Sørensen JB; Nielsen MS; Gudme CN; Larsen EH; Nielsen R
    Pflugers Arch; 2001 Apr; 442(1):1-11. PubMed ID: 11374055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological evidence for an ATP-gated ion channel in the principal cells of the frog skin epithelium.
    Brodin B; Nielsen R
    Pflugers Arch; 2000 Jan; 439(3):227-33. PubMed ID: 10650971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basolateral membrane chloride permeability of A6 cells: implication in cell volume regulation.
    Brochiero E; Banderali U; Lindenthal S; Raschi C; Ehrenfeld J
    Pflugers Arch; 1995 Nov; 431(1):32-45. PubMed ID: 8584416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of apical membrane chloride permeability in the renal A6 cell line by nucleotides.
    Banderali U; Brochiero E; Lindenthal S; Raschi C; Bogliolo S; Ehrenfeld J
    J Physiol; 1999 Sep; 519 Pt 3(Pt 3):737-51. PubMed ID: 10457087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular calcium modulates basolateral K(+)-permeability in frog skin epithelium.
    Brodin B; Rytved KA; Nielsen R
    Pflugers Arch; 1994 Jan; 426(1-2):171-3. PubMed ID: 8146019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The coupled movements of sodium and chloride across the basolateral membrane of frog skin epithelium.
    Fernandes PL; Ferreira HG; Ferreira KT
    J Physiol; 1989 Sep; 416():403-20. PubMed ID: 2607456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ba2+-induced changes in the Na+- and K+-permeability of the isolated frog skin.
    Nielson R
    Acta Physiol Scand; 1985 May; 124(1):61-70. PubMed ID: 2409746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP stimulates Cl- secretion and reduces amiloride-sensitive Na+ absorption in M-1 mouse cortical collecting duct cells.
    Cuffe JE; Bielfeld-Ackermann A; Thomas J; Leipziger J; Korbmacher C
    J Physiol; 2000 Apr; 524 Pt 1(Pt 1):77-90. PubMed ID: 10747185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common channels for water and protons at apical and basolateral cell membranes of frog skin and urinary bladder epithelia. Effects of oxytocin, heavy metals, and inhibitors of H(+)-adenosine triphosphatase.
    Harvey B; Lacoste I; Ehrenfeld J
    J Gen Physiol; 1991 Apr; 97(4):749-76. PubMed ID: 1647438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prostaglandin E2 release from dermis regulates sodium permeability of frog skin epithelium.
    Rytved KA; Brodin B; Nielsen R
    Acta Physiol Scand; 1995 Mar; 153(3):263-70. PubMed ID: 7625179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small transepithelial osmotic gradients affect apical sodium permeability in frog skin.
    Brodin B; Nielsen R
    Pflugers Arch; 1993 Jun; 423(5-6):411-7. PubMed ID: 8394566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular ion activities in frog skin in relation to external sodium and effects of amiloride and/or ouabain.
    Harvey BJ; Kernan RP
    J Physiol; 1984 Apr; 349():501-17. PubMed ID: 6610743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deoxycholic acid (DOC) affects the transport properties of distal colon.
    Mauricio AC; Slawik M; Heitzmann D; von Hahn T; Warth R; Bleich M; Greger R
    Pflugers Arch; 2000 Mar; 439(5):532-40. PubMed ID: 10764211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active transepithelial potassium transport in frog skin via specific potassium channels in the apical membrane.
    Nielsen R
    Acta Physiol Scand; 1984 Feb; 120(2):287-96. PubMed ID: 6324546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cell volume changes on membrane ionic permeabilities and sodium transport in frog skin (Rana ridibunda).
    Costa PM; Fernandes PL; Ferreira HG; Ferreira KT; Giraldez F
    J Physiol; 1987 Dec; 393():1-17. PubMed ID: 2451735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic mechanisms of Ca(2+)-dependent electrolyte transport across equine sweat gland epithelium.
    Ko WH; Chan HC; Chew SB; Wong PY
    J Physiol; 1996 Jun; 493 ( Pt 3)(Pt 3):885-94. PubMed ID: 8799908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blockage of Na+ currents through poorly selective cation channels in the apical membrane of frog skin and toad urinary bladder.
    Van Driessche W; Desmedt L; Simaels J
    Pflugers Arch; 1991 Apr; 418(3):193-203. PubMed ID: 1649987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. K+ secretion across frog skin. Induction by removal of basolateral Cl-.
    Fisher RS; Van Driessche W
    J Gen Physiol; 1991 Feb; 97(2):219-43. PubMed ID: 2016579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.