BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 9019724)

  • 1. A new technique for assessing the microscopic distribution of cellular calcium exit sites.
    Belan PV; Gerasimenko OV; Berry D; Saftenku E; Petersen OH; Tepikin AV
    Pflugers Arch; 1996; 433(1-2):200-8. PubMed ID: 9019724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of Ca2+ extrusion sites on the mouse pancreatic acinar cell surface.
    Belan P; Gerasimenko O; Petersen OH; Tepikin AV
    Cell Calcium; 1997 Jul; 22(1):5-10. PubMed ID: 9232347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of Ca2+ extrusion sites in pancreatic acinar cells.
    Belan PV; Gerasimenko OV; Tepikin AV; Petersen OH
    J Biol Chem; 1996 Mar; 271(13):7615-9. PubMed ID: 8631796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The droplet technique: measurement of calcium extrusion from single isolated mammalian cells.
    Tepikin AV; Llopis J; Snitsarev VA; Gallacher DV; Petersen OH
    Pflugers Arch; 1994 Oct; 428(5-6):664-70. PubMed ID: 7838690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Laser scanning confocal microscopic imaging for Ca2 + oscillations of pancreatic acinar cells in mice].
    Wang JK; Zhao MQ; Sun NN; Sun FF; Wu J; Shen JX; Wang HY
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2014 Jul; 30(4):373-7. PubMed ID: 25330680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micromolar and submicromolar Ca2+ spikes regulating distinct cellular functions in pancreatic acinar cells.
    Ito K; Miyashita Y; Kasai H
    EMBO J; 1997 Jan; 16(2):242-51. PubMed ID: 9029145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms underlying InsP3-evoked global Ca2+ signals in mouse pancreatic acinar cells.
    Fogarty KE; Kidd JF; Tuft DA; Thorn P
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):515-26. PubMed ID: 10922004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship between acetylcholine-evoked Ca(2+)-dependent current and the Ca2+ concentrations in the cytosol and the lumen of the endoplasmic reticulum in pancreatic acinar cells.
    Park MK; Tepikin AV; Petersen OH
    Pflugers Arch; 1999 Nov; 438(6):760-5. PubMed ID: 10591062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short pulses of acetylcholine stimulation induce cytosolic Ca2+ signals that are excluded from the nuclear region in pancreatic acinar cells.
    Gerasimenko OV; Gerasimenko JV; Petersen OH; Tepikin AV
    Pflugers Arch; 1996 Oct; 432(6):1055-61. PubMed ID: 8781200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium binding capacity of the cytosol and endoplasmic reticulum of mouse pancreatic acinar cells.
    Mogami H; Gardner J; Gerasimenko OV; Camello P; Petersen OH; Tepikin AV
    J Physiol; 1999 Jul; 518 ( Pt 2)(Pt 2):463-7. PubMed ID: 10381592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-magnesium interactions in pancreatic acinar cells.
    Mooren FC; Turi S; Gunzel D; Schlue WR; Domschke W; Singh J; Lerch MM
    FASEB J; 2001 Mar; 15(3):659-72. PubMed ID: 11259384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+ waves require sequential activation of inositol trisphosphate receptors and ryanodine receptors in pancreatic acini.
    Leite MF; Burgstahler AD; Nathanson MH
    Gastroenterology; 2002 Feb; 122(2):415-27. PubMed ID: 11832456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring of Ca2+ release from intracellular stores in permeabilized rat parotid acinar cells using the fluorescent indicators Mag-fura-2 and calcium green C18.
    Tojyo Y; Tanimura A; Matsumoto Y
    Biochem Biophys Res Commun; 1997 Nov; 240(1):189-95. PubMed ID: 9367908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitive imaging of Ca2+ dynamics in pancreatic acinar cells of yellow cameleon-nano transgenic mice.
    Oshima Y; Imamura T; Shintani A; Kajiura-Kobayashi H; Hibi T; Nagai T; Nonaka S; Nemoto T
    Int J Mol Sci; 2014 Nov; 15(11):19971-86. PubMed ID: 25372943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of calcium oscillations in pancreatic acinar cells.
    Elliott AC; Bruce JI
    Digestion; 1997; 58 Suppl 2():69-74. PubMed ID: 9302494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of islet hormones on nerve-mediated and acetylcholine-evoked secretory responses in the isolated pancreas of normal and diabetic rats.
    Singh J; Adeghate E
    Int J Mol Med; 1998 Mar; 1(3):627-34. PubMed ID: 9852277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identical regional mechanisms of intracellular free Ca2+ concentration increase during polarized agonist-evoked Ca2+ response in pancreatic acinar cells.
    Toescu EC; Gallacher DV; Petersen OH
    Biochem J; 1994 Nov; 304 ( Pt 1)(Pt 1):313-6. PubMed ID: 7998952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of calcium signals by intracellular pH in isolated rat pancreatic acinar cells.
    Speake T; Elliott AC
    J Physiol; 1998 Jan; 506 ( Pt 2)(Pt 2):415-30. PubMed ID: 9490869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium transport pathways of pancreatic acinar cells.
    Muallem S
    Annu Rev Physiol; 1989; 51():83-105. PubMed ID: 2540704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic control of multiple forms of Ca(2+) spikes by inositol trisphosphate in pancreatic acinar cells.
    Ito K; Miyashita Y; Kasai H
    J Cell Biol; 1999 Jul; 146(2):405-13. PubMed ID: 10427093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.