These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9020071)

  • 1. A functional model related to cytochrome c oxidase and its electrocatalytic four-electron reduction of O2.
    Collman JP; Fu L; Herrmann PC; Zhang X
    Science; 1997 Feb; 275(5302):949-51. PubMed ID: 9020071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron porphyrins as models of cytochrome c oxidase.
    Ricard D; L'Her M; Richard P; Boitrel B
    Chemistry; 2001 Aug; 7(15):3291-7. PubMed ID: 11531114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes.
    Liu JG; Naruta Y; Tani F
    Chemistry; 2007; 13(22):6365-78. PubMed ID: 17503416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distal metal effects in cobalt porphyrins related to CcO.
    Collman JP; Berg KE; Sunderland CJ; Aukauloo A; Vance MA; Solomon EI
    Inorg Chem; 2002 Dec; 41(25):6583-96. PubMed ID: 12470053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of electron availability on selectivity of O2 reduction by synthetic monometallic Fe porphyrins.
    Collman JP; Shiryaeva IM; Boulatov R
    Inorg Chem; 2003 Aug; 42(16):4807-9. PubMed ID: 12895101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cobalt(IV) corroles as catalysts for the electroreduction of O2: reactions of heterobimetallic dyads containing a face-to-face linked Fe(III) or Mn(III) porphyrin.
    Kadish KM; Frémond L; Burdet F; Barbe JM; Gros CP; Guilard R
    J Inorg Biochem; 2006 Apr; 100(4):858-68. PubMed ID: 16516296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Four-electron oxygen reduction by brominated cobalt corrole.
    Schechter A; Stanevsky M; Mahammed A; Gross Z
    Inorg Chem; 2012 Jan; 51(1):22-4. PubMed ID: 22221278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cytochrome C oxidase model catalyzes oxygen to water reduction under rate-limiting electron flux.
    Collman JP; Devaraj NK; Decréau RA; Yang Y; Yan YL; Ebina W; Eberspacher TA; Chidsey CE
    Science; 2007 Mar; 315(5818):1565-8. PubMed ID: 17363671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional analogues of the dioxygen reduction site in cytochrome oxidase: mechanistic aspects and possible effects of Cu(B).
    Boulatov R; Collman JP; Shiryaeva IM; Sunderland CJ
    J Am Chem Soc; 2002 Oct; 124(40):11923-35. PubMed ID: 12358536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-dependent reversal of the cytochrome oxidase reaction.
    Wikström M
    Proc Natl Acad Sci U S A; 1981 Jul; 78(7):4051-4. PubMed ID: 6270657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocatalytic O2-Reduction by Synthetic Cytochrome c Oxidase Mimics: Identification of a "Bridging Peroxo" Intermediate Involved in Facile 4e(-)/4H(+) O2-Reduction.
    Chatterjee S; Sengupta K; Hematian S; Karlin KD; Dey A
    J Am Chem Soc; 2015 Oct; 137(40):12897-905. PubMed ID: 26419806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochrome c oxidase, ligands and electrons.
    Brunori M; Giuffrè A; Sarti P
    J Inorg Biochem; 2005 Jan; 99(1):324-36. PubMed ID: 15598510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of a distal pocket in the catalytic O2 reduction by cytochrome c oxidase models immobilized on interdigitated array electrodes.
    Collman JP; Decréau RA; Lin H; Hosseini A; Yang Y; Dey A; Eberspacher TA
    Proc Natl Acad Sci U S A; 2009 May; 106(18):7320-3. PubMed ID: 19380725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clarification of the oxidation state of cobalt corroles in heterogeneous and homogeneous catalytic reduction of dioxygen.
    Kadish KM; Shen J; Frémond L; Chen P; El Ojaimi M; Chkounda M; Gros CP; Barbe JM; Ohkubo K; Fukuzumi S; Guilard R
    Inorg Chem; 2008 Aug; 47(15):6726-37. PubMed ID: 18582035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and spectroscopic characterization of the dioxygen adduct of a heme-Cu complex possessing a cross-linked tyrosine-histidine mimic: modeling the active site of cytochrome c oxidase.
    Liu JG; Naruta Y; Tani F; Chishiro T; Tachi Y
    Chem Commun (Camb); 2004 Jan; (1):120-1. PubMed ID: 14737361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrocatalytic O2 reduction by synthetic analogues of the heme/Cu site of cytochrome oxidase incorporated in a lipid film.
    Collman JP; Boulatov R
    Angew Chem Int Ed Engl; 2002 Sep; 41(18):3487-9. PubMed ID: 12298074
    [No Abstract]   [Full Text] [Related]  

  • 17. pH dependence of proton translocation in the oxidative and reductive phases of the catalytic cycle of cytochrome c oxidase. The role of H2O produced at the oxygen-reduction site.
    Capitanio G; Martino PL; Capitanio N; De Nitto E; Papa S
    Biochemistry; 2006 Feb; 45(6):1930-7. PubMed ID: 16460039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic evidence for a heme-superoxide/Cu(I) intermediate in a functional model of cytochrome c oxidase.
    Collman JP; Sunderland CJ; Berg KE; Vance MA; Solomon EI
    J Am Chem Soc; 2003 Jun; 125(22):6648-9. PubMed ID: 12769571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal corroles as electrocatalysts for oxygen reduction.
    Collman JP; Kaplun M; Decréau RA
    Dalton Trans; 2006 Jan; (4):554-9. PubMed ID: 16402141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of 3-quinolinoyl picket porphyrins to the electroreduction of dioxygen to water: mimicking the active site of cytochrome c oxidase.
    Ricard D; Didier A; L'Her M; Boitrel B
    Chembiochem; 2001 Feb; 2(2):144-8. PubMed ID: 11828439
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.