These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 9020104)
21. Modulation of the function of the signal receptor domain of XylR, a member of a family of prokaryotic enhancer-like positive regulators. Salto R; Delgado A; Michán C; Marqués S; Ramos JL J Bacteriol; 1998 Feb; 180(3):600-4. PubMed ID: 9457863 [TBL] [Abstract][Full Text] [Related]
22. Mutational analysis of the inducer recognition sites of the LysR-type transcriptional regulator TfdT of Burkholderia sp. NK8. Lang GH; Ogawa N Appl Microbiol Biotechnol; 2009 Jul; 83(6):1085-94. PubMed ID: 19319522 [TBL] [Abstract][Full Text] [Related]
23. Identification of the nahR gene product and nucleotide sequences required for its activation of the sal operon. Schell MA; Wender PE J Bacteriol; 1986 Apr; 166(1):9-14. PubMed ID: 3007442 [TBL] [Abstract][Full Text] [Related]
24. Genome Analysis of Naphthalene-Degrading Kim J; Park W J Microbiol Biotechnol; 2018 Feb; 28(2):330-337. PubMed ID: 29169219 [TBL] [Abstract][Full Text] [Related]
25. Transcriptional control of the nah and sal hydrocarbon-degradation operons by the nahR gene product. Schell MA Gene; 1985; 36(3):301-9. PubMed ID: 3908220 [TBL] [Abstract][Full Text] [Related]
26. Different modes of binding of mono- and biaromatic effectors to the transcriptional regulator TTGV: role in differential derepression from its cognate operator. Guazzaroni ME; Gallegos MT; Ramos JL; Krell T J Biol Chem; 2007 Jun; 282(22):16308-16. PubMed ID: 17416591 [TBL] [Abstract][Full Text] [Related]
27. Engineering of alkyl- and haloaromatic-responsive gene expression with mini-transposons containing regulated promoters of biodegradative pathways of Pseudomonas. de Lorenzo V; Fernández S; Herrero M; Jakubzik U; Timmis KN Gene; 1993 Aug; 130(1):41-6. PubMed ID: 8393826 [TBL] [Abstract][Full Text] [Related]
28. In vitro binding of purified NahR regulatory protein with promoter Psal. Park HH; Lim WK; Shin HJ Biochim Biophys Acta; 2005 Sep; 1725(2):247-55. PubMed ID: 15978733 [TBL] [Abstract][Full Text] [Related]
29. Genetics of naphthalene catabolism in pseudomonads. Yen KM; Serdar CM Crit Rev Microbiol; 1988; 15(3):247-68. PubMed ID: 3288442 [TBL] [Abstract][Full Text] [Related]
30. Regulation of naphthalene catabolic genes of plasmid NAH7. Yen KM; Gunsalus IC J Bacteriol; 1985 Jun; 162(3):1008-13. PubMed ID: 3997772 [TBL] [Abstract][Full Text] [Related]
31. Residues that influence in vivo and in vitro CbbR function in Rhodobacter sphaeroides and identification of a specific region critical for co-inducer recognition. Dangel AW; Gibson JL; Janssen AP; Tabita FR Mol Microbiol; 2005 Sep; 57(5):1397-414. PubMed ID: 16102008 [TBL] [Abstract][Full Text] [Related]
32. Physiological role of the novel salicylaldehyde dehydrogenase NahV in mineralization of naphthalene by Pseudomonas putida ND6. Li S; Li X; Zhao H; Cai B Microbiol Res; 2011 Dec; 166(8):643-53. PubMed ID: 21376550 [TBL] [Abstract][Full Text] [Related]
33. Novel effector control through modulation of a preexisting binding site of the aromatic-responsive sigma(54)-dependent regulator DmpR. O'Neill E; Sze CC; Shingler V J Biol Chem; 1999 Nov; 274(45):32425-32. PubMed ID: 10542286 [TBL] [Abstract][Full Text] [Related]
34. [Genetic control of naphthalene biodegradation by a strain of Pseudomonas sp. 8909N]. Kosheleva IA; Sokolov SL; Balashova NV; Filonov AE; Meleshko EI; Gaiazov RR; Boronin AM Genetika; 1997 Jun; 33(6):762-8. PubMed ID: 9289413 [TBL] [Abstract][Full Text] [Related]
35. Monitoring of naphthalene catabolism by bioluminescence with nah-lux transcriptional fusions. Burlage RS; Sayler GS; Larimer F J Bacteriol; 1990 Sep; 172(9):4749-57. PubMed ID: 2203729 [TBL] [Abstract][Full Text] [Related]
36. NahW, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10. Bosch R; Moore ER; García-Valdés E; Pieper DH J Bacteriol; 1999 Apr; 181(8):2315-22. PubMed ID: 10197990 [TBL] [Abstract][Full Text] [Related]
37. Crystal structure of the DNA-binding domain of the LysR-type transcriptional regulator CbnR in complex with a DNA fragment of the recognition-binding site in the promoter region. Koentjoro MP; Adachi N; Senda M; Ogawa N; Senda T FEBS J; 2018 Mar; 285(5):977-989. PubMed ID: 29323785 [TBL] [Abstract][Full Text] [Related]
38. The role of the interdomain B linker in the activation of the XylR protein of Pseudomonas putida. Garmendia J; de Lorenzo V Mol Microbiol; 2000 Oct; 38(2):401-10. PubMed ID: 11069665 [TBL] [Abstract][Full Text] [Related]
39. Emergence of novel functions in transcriptional regulators by regression to stem protein types. Galvão TC; Mencía M; de Lorenzo V Mol Microbiol; 2007 Aug; 65(4):907-19. PubMed ID: 17645451 [TBL] [Abstract][Full Text] [Related]
40. A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. Fuenmayor SL; Wild M; Boyes AL; Williams PA J Bacteriol; 1998 May; 180(9):2522-30. PubMed ID: 9573207 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]