These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 9020154)

  • 41. Identification of regulatory domains in ADP-ribosyltransferase-1 that determine transferase and NAD glycohydrolase activities.
    Bourgeois C; Okazaki I; Cavanaugh E; Nightingale M; Moss J
    J Biol Chem; 2003 Jul; 278(29):26351-5. PubMed ID: 12721285
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Endogenous ADP-ribosylation for eukaryotic elongation factor 2: evidence of two different sites and reactions.
    Bektaş M; Nurten R; Ergen K; Bermek E
    Cell Biochem Funct; 2006; 24(4):369-80. PubMed ID: 16142694
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selective probing of ADP-ribosylation reactions with oxidized 2'-deoxy-nicotinamide adenine dinucleotide.
    Alvarez-Gonzalez R; Moss J; Niedergang C; Althaus FR
    Biochemistry; 1988 Jul; 27(14):5378-83. PubMed ID: 3139033
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thyroid membrane ADP ribosyltransferase activity. Stimulation by thyrotropin and activity in functioning and nonfunctioning rat thyroid cells in culture.
    De Wolf MJ; Vitti P; Ambesi-Impiombato FS; Kohn LD
    J Biol Chem; 1981 Dec; 256(23):12287-96. PubMed ID: 6271780
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Auto-ADP-ribosylation of Pseudomonas aeruginosa ExoS.
    Riese MJ; Goehring UM; Ehrmantraut ME; Moss J; Barbieri JT; Aktories K; Schmidt G
    J Biol Chem; 2002 Apr; 277(14):12082-8. PubMed ID: 11821389
    [TBL] [Abstract][Full Text] [Related]  

  • 46. NAD-dependent ADP-ribosylation of arginine and proteins by Escherichia coli heat-labile enterotoxin.
    Moss J; Garrison S; Oppenheimer NJ; Richardson SH
    J Biol Chem; 1979 Jul; 254(14):6270-2. PubMed ID: 221495
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD.
    Du J; Jiang H; Lin H
    Biochemistry; 2009 Apr; 48(13):2878-90. PubMed ID: 19220062
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular cloning and characterization of lymphocyte and muscle ADP-ribosyltransferases.
    Okazaki IJ; Kim HJ; Moss J
    Adv Exp Med Biol; 1997; 419():129-36. PubMed ID: 9193645
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of CTL by ecto-nictinamide adenine dinucleotide (NAD) involves ADP-ribosylation of a p56lck-associated protein.
    Wang J; Nemoto E; Dennert G
    J Immunol; 1996 Apr; 156(8):2819-27. PubMed ID: 8609401
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ADP-ribosylation of tubulin by chicken NAD-arginine ADP-ribosyltransferase suppresses microtubule formation.
    Terashima M; Yamamori C; Tsuchiya M; Shimoyama M
    J Nutr Sci Vitaminol (Tokyo); 1999 Aug; 45(4):393-400. PubMed ID: 10575630
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Generating Protein-Linked and Protein-Free Mono-, Oligo-, and Poly(ADP-Ribose) In Vitro.
    Lin KY; Huang D; Kraus WL
    Methods Mol Biol; 2018; 1813():91-108. PubMed ID: 30097863
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nitric oxide-induced modification of glyceraldehyde-3-phosphate dehydrogenase with NAD+ is not ADP-ribosylation.
    Itoga M; Tsuchiya M; Ishino H; Shimoyama M
    J Biochem; 1997 Jun; 121(6):1041-6. PubMed ID: 9354374
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Automodification of arginine-specific ADP-ribosyltransferase purified from chicken peripheral heterophils and alteration of the transferase activity.
    Yamada K; Tsuchiya M; Nishikori Y; Shimoyama M
    Arch Biochem Biophys; 1994 Jan; 308(1):31-6. PubMed ID: 8311468
    [TBL] [Abstract][Full Text] [Related]  

  • 54. ADP-ribosylation in inner membrane of rat liver mitochondria.
    Richter C; Winterhalter KH; Baumhüter S; Lötscher HR; Moser B
    Proc Natl Acad Sci U S A; 1983 Jun; 80(11):3188-92. PubMed ID: 6574480
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The ARH and Macrodomain Families of α-ADP-ribose-acceptor Hydrolases Catalyze α-NAD
    Stevens LA; Kato J; Kasamatsu A; Oda H; Lee DY; Moss J
    ACS Chem Biol; 2019 Dec; 14(12):2576-2584. PubMed ID: 31599159
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of high density lipoprotein-bound and soluble RT6 released following administration of anti-RT6.1 monoclonal antibody.
    Lesma E; Moss J; Brewer HB; Bortell R; Greiner D; Mordes J; Rossini AA
    J Immunol; 1998 Aug; 161(3):1212-9. PubMed ID: 9686581
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nicotinamide adenine dinucleotide (NAD) and its metabolites inhibit T lymphocyte proliferation: role of cell surface NAD glycohydrolase and pyrophosphatase activities.
    Bortell R; Moss J; McKenna RC; Rigby MR; Niedzwiecki D; Stevens LA; Patton WA; Mordes JP; Greiner DL; Rossini AA
    J Immunol; 2001 Aug; 167(4):2049-59. PubMed ID: 11489987
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The RT6 system of the rat: developmental, molecular and functional aspects.
    Thiele HG; Haag F
    Immunol Rev; 2001 Dec; 184():96-108. PubMed ID: 12086324
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanism of action of choleragen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor.
    Moss J; Vaughan M
    J Biol Chem; 1977 Apr; 252(7):2455-7. PubMed ID: 139409
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Monitoring the Sensitivity of T Cell Populations Towards NAD
    Rissiek B; Lukowiak M; Haag F; Magnus T; Koch-Nolte F
    Methods Mol Biol; 2018; 1813():317-326. PubMed ID: 30097878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.