These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 9020358)

  • 1. Spatio-temporal frequency domains and their relation to cytochrome oxidase staining in cat visual cortex.
    Shoham D; Hübener M; Schulze S; Grinvald A; Bonhoeffer T
    Nature; 1997 Feb; 385(6616):529-33. PubMed ID: 9020358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical maps of separable tuning properties predict population responses to complex visual stimuli.
    Baker TI; Issa NP
    J Neurophysiol; 2005 Jul; 94(1):775-87. PubMed ID: 15758052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Correlation of topographic and spatial-frequency characteristics of the lateral suprasylvian region and the striate cortex in the cat].
    Shelepin IuE
    Neirofiziologiia; 1984; 16(1):35-41. PubMed ID: 6717677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Spatial frequency tuning characteristics of cat primary visual cortex at different topological locations by optical imaging].
    Yu HB; Shou TD
    Sheng Li Xue Bao; 2000 Oct; 52(5):411-5. PubMed ID: 11941397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How do functional maps in primary visual cortex vary with eccentricity?
    Xu X; Anderson TJ; Casagrande VA
    J Comp Neurol; 2007 Apr; 501(5):741-55. PubMed ID: 17299757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Layout of transcallosal activity in cat visual cortex revealed by optical imaging.
    Rochefort NL; Buzás P; Kisvárday ZF; Eysel UT; Milleret C
    Neuroimage; 2007 Jul; 36(3):804-21. PubMed ID: 17475512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropy in the representation of direction preferences in cat area 18.
    Ribot J; Tanaka S; O'Hashi K; Ajima A
    Eur J Neurosci; 2008 May; 27(10):2773-80. PubMed ID: 18489580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of striate and extrastriate visual cortical areas in spatial attention.
    Martínez A; Anllo-Vento L; Sereno MI; Frank LR; Buxton RB; Dubowitz DJ; Wong EC; Hinrichs H; Heinze HJ; Hillyard SA
    Nat Neurosci; 1999 Apr; 2(4):364-9. PubMed ID: 10204544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The temporal frequency tuning of human visual cortex investigated using synthetic aperture magnetometry.
    Fawcett IP; Barnes GR; Hillebrand A; Singh KD
    Neuroimage; 2004 Apr; 21(4):1542-53. PubMed ID: 15050578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys.
    Slovin H; Arieli A; Hildesheim R; Grinvald A
    J Neurophysiol; 2002 Dec; 88(6):3421-38. PubMed ID: 12466458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial and temporal frequency selectivity of neurons in the middle temporal visual area of new world monkeys (Callithrix jacchus).
    Lui LL; Bourne JA; Rosa MG
    Eur J Neurosci; 2007 Mar; 25(6):1780-92. PubMed ID: 17432965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual cortex neurons of monkeys and cats: temporal dynamics of the spatial frequency response function.
    Frazor RA; Albrecht DG; Geisler WS; Crane AM
    J Neurophysiol; 2004 Jun; 91(6):2607-27. PubMed ID: 14960559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatio-temporal dynamics of visual selective attention identified by a common spatial pattern decomposition method.
    Li L; Yao D; Yin G
    Brain Res; 2009 Jul; 1282():84-94. PubMed ID: 19501069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial frequency-specific contrast adaptation originates in the primary visual cortex.
    Duong T; Freeman RD
    J Neurophysiol; 2007 Jul; 98(1):187-95. PubMed ID: 17428911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping multiple features in the population response of visual cortex.
    Basole A; White LE; Fitzpatrick D
    Nature; 2003 Jun; 423(6943):986-90. PubMed ID: 12827202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Posteromedial lateral suprasylvian motion area modulates direction but not orientation preference in area 17 of cats.
    Shen W; Liang Z; Chen X; Shou T
    Neuroscience; 2006 Oct; 142(3):905-16. PubMed ID: 16890373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drifting grating stimulation reveals particular activation properties of visual neurons in the caudate nucleus.
    Nagy A; Paróczy Z; Márkus Z; Berényi A; Wypych M; Waleszczyk WJ; Benedek G
    Eur J Neurosci; 2008 Apr; 27(7):1801-8. PubMed ID: 18371085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unmasking motion-processing activity in human brain area V5/MT+ mediated by pathways that bypass primary visual cortex.
    Schoenfeld MA; Heinze HJ; Woldorff MG
    Neuroimage; 2002 Oct; 17(2):769-79. PubMed ID: 12377152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct contrast response functions in striate and extra-striate regions of visual cortex revealed with magnetoencephalography (MEG).
    Hall SD; Holliday IE; Hillebrand A; Furlong PL; Singh KD; Barnes GR
    Clin Neurophysiol; 2005 Jul; 116(7):1716-22. PubMed ID: 15953561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three streams of visual information processing in V2 of Cebus monkey.
    Nascimento-Silva S; Gattass R; Fiorani M; Sousa AP
    J Comp Neurol; 2003 Nov; 466(1):104-18. PubMed ID: 14515243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.