BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 9020367)

  • 61. Differential CD52 expression by distinct myeloid dendritic cell subsets: implications for alemtuzumab activity at the level of antigen presentation in allogeneic graft-host interactions in transplantation.
    Ratzinger G; Reagan JL; Heller G; Busam KJ; Young JW
    Blood; 2003 Feb; 101(4):1422-9. PubMed ID: 12393688
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Phenotypic transformation of CD52(pos) to CD52(neg) leukemic T cells as a mechanism for resistance to CAMPATH-1H.
    Birhiray RE; Shaw G; Guldan S; Rudolf D; Delmastro D; Santabarbara P; Brettman L
    Leukemia; 2002 May; 16(5):861-4. PubMed ID: 11986948
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Subcutaneous CAMPATH-1H in fludarabine-resistant/relapsed chronic lymphocytic and B-prolymphocytic leukaemia.
    Bowen AL; Zomas A; Emmett E; Matutes E; Dyer MJ; Catovsky D
    Br J Haematol; 1997 Mar; 96(3):617-9. PubMed ID: 9054672
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Different levels of CD52 antigen expression evaluated by quantitative fluorescence cytometry are detected on B-lymphocytes, CD 34+ cells and tumor cells of patients with chronic B-cell lymphoproliferative diseases.
    Klabusay M; Sukova V; Coupek P; Brychtova Y; Mayer J
    Cytometry B Clin Cytom; 2007 Sep; 72(5):363-70. PubMed ID: 17428002
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Donor CD4 T cells convert mixed to full donor T-cell chimerism and replenish the CD52-positive T-cell pool after alemtuzumab-based T-cell-depleted allo-transplantation.
    Meyer RG; Wagner EM; Konur A; Bender K; Schmitt T; Hemmerling J; Wehler D; Hartwig UF; Roosnek E; Huber C; Kolbe K; Herr W
    Bone Marrow Transplant; 2010 Apr; 45(4):668-74. PubMed ID: 19684624
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Expression of CD52 in peripheral T-cell lymphoma.
    Piccaluga PP; Agostinelli C; Righi S; Zinzani PL; Pileri SA
    Haematologica; 2007 Apr; 92(4):566-7. PubMed ID: 17488672
    [TBL] [Abstract][Full Text] [Related]  

  • 67. An IgG1-like bispecific antibody targeting CD52 and CD20 for the treatment of B-cell malignancies.
    Qi J; Chen SS; Chiorazzi N; Rader C
    Methods; 2019 Feb; 154():70-76. PubMed ID: 30145356
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Monoclonal antibody therapy of leukaemias and lymphomas.
    Jacobs SA; Foon KA
    Expert Opin Biol Ther; 2005 Sep; 5(9):1225-43. PubMed ID: 16120052
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Recognition of CD52 allelic gene products by CAMPATH-1H antibodies.
    Hale C; Bartholomew M; Taylor V; Stables J; Topley P; Tite J
    Immunology; 1996 Jun; 88(2):183-90. PubMed ID: 8690449
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The emerging role of alemtuzumab in chronic lymphocytic leukemia.
    Nabhan C
    Clin Lymphoma Myeloma; 2005 Sep; 6(2):115-21. PubMed ID: 16231849
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Management of infections in patients with chronic lymphocytic leukemia treated with alemtuzumab.
    Elter T; Vehreschild JJ; Gribben J; Cornely OA; Engert A; Hallek M
    Ann Hematol; 2009 Feb; 88(2):121-32. PubMed ID: 18682948
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Pharmacokinetics of CAMPATH-1H: assay development and validation.
    Rebello P; Hale G
    J Immunol Methods; 2002 Feb; 260(1-2):285-302. PubMed ID: 11792397
    [TBL] [Abstract][Full Text] [Related]  

  • 73. CD52 ligation induces CD4 and CD8 down modulation in vivo and in vitro.
    Shah A; Lowenstein H; Chant A; Khan A
    Transpl Int; 2006 Sep; 19(9):749-58. PubMed ID: 16918536
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Treatment of severe refractory autoimmune hemolytic anemia in B-cell chronic lymphocytic leukemia with alemtuzumab (humanized CD52 monoclonal antibody).
    Karlsson C; Hansson L; Celsing F; Lundin J
    Leukemia; 2007 Mar; 21(3):511-4. PubMed ID: 17215854
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Alemtuzumab induces caspase-independent cell death in human chronic lymphocytic leukemia cells through a lipid raft-dependent mechanism.
    Mone AP; Cheney C; Banks AL; Tridandapani S; Mehter N; Guster S; Lin T; Eisenbeis CF; Young DC; Byrd JC
    Leukemia; 2006 Feb; 20(2):272-9. PubMed ID: 16341049
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Campath-1H monoclonal antibody therapy.
    Flynn JM; Byrd JC
    Curr Opin Oncol; 2000 Nov; 12(6):574-81. PubMed ID: 11085457
    [TBL] [Abstract][Full Text] [Related]  

  • 77. CD52-Negative NK Cells Are Abundant in the Liver and Less Susceptible to Alemtuzumab Treatment.
    Hotta R; Ohira M; Matsuura T; Muraoka I; Tryphonopoulos P; Fan J; Tekin A; Selvaggi G; Levi D; Ruiz P; Ricordi C; Vianna R; Ohdan H; Waldmann H; Tzakis AG; Nishida S
    PLoS One; 2016; 11(8):e0161618. PubMed ID: 27560943
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cross-linking of the CAMPATH-1 antigen (CD52) mediates growth inhibition in human B- and T-lymphoma cell lines, and subsequent emergence of CD52-deficient cells.
    Rowan W; Tite J; Topley P; Brett SJ
    Immunology; 1998 Nov; 95(3):427-36. PubMed ID: 9824507
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A sialoglycoprotein, gp20, of the human capacitated sperm surface is a homologue of the leukocyte CD52 antigen: analysis of the effect of anti-CD52 monoclonal antibody (CAMPATH-1) on capacitated spermatozoa.
    Focarelli R; Francavilla S; Francavilla F; Della Giovampaola C; Santucci A; Rosati F
    Mol Hum Reprod; 1999 Jan; 5(1):46-51. PubMed ID: 10050661
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Alemtuzumab for B-cell chronic lymphocytic leukemia.
    Robak T
    Expert Rev Anticancer Ther; 2008 Jul; 8(7):1033-51. PubMed ID: 18588450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.