These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 9020516)

  • 1. Structure-activity relationships in the hydrolysis of acrylate and methacrylate esters by carboxylesterase in vitro.
    McCarthy TJ; Witz G
    Toxicology; 1997 Jan; 116(1-3):153-8. PubMed ID: 9020516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reactivity of selected acrylate esters toward glutathione and deoxyribonucleosides in vitro: structure-activity relationships.
    McCarthy TJ; Hayes EP; Schwartz CS; Witz G
    Fundam Appl Toxicol; 1994 May; 22(4):543-8. PubMed ID: 8056201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrolysis of several glycol ether acetates and acrylate esters by nasal mucosal carboxylesterase in vitro.
    Stott WT; McKenna MJ
    Fundam Appl Toxicol; 1985 Apr; 5(2):399-404. PubMed ID: 3988008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-activity relationships of acrylate esters: reactivity towards glutathione and hydrolysis by carboxylesterase in vitro.
    McCarthy TJ; Witz G
    Adv Exp Med Biol; 1991; 283():333-5. PubMed ID: 2069004
    [No Abstract]   [Full Text] [Related]  

  • 5. Ethyl acrylate-induced gastric toxicity. II. Structure-toxicity relationships and mechanism.
    Ghanayem BI; Maronpot RR; Matthews HB
    Toxicol Appl Pharmacol; 1985 Sep; 80(2):336-44. PubMed ID: 4024123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between base-catalyzed hydrolysis rates or glutathione reactivity for acrylates and methacrylates and their NMR spectra or heat of formation.
    Fujisawa S; Kadoma Y
    Int J Mol Sci; 2012; 13(5):5789-5800. PubMed ID: 22754331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The regional hydrolysis of ethyl acrylate to acrylic acid in the rat nasal cavity.
    Frederick CB; Udinsky JR; Finch L
    Toxicol Lett; 1994 Jan; 70(1):49-56. PubMed ID: 8310456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytotoxicity and Pro-/Anti-inflammatory Properties of Cinnamates, Acrylates and Methacrylates Against RAW264.7 Cells.
    Murakami Y; Kawata A; Suzuki S; Fujisawa S
    In Vivo; 2018; 32(6):1309-1322. PubMed ID: 30348683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification or urinary mercapturic acids formed from acrylate, methacrylate and crotonate in the rat.
    Delbressine LP; Seutter-Berlage F; Seutter E
    Xenobiotica; 1981 Apr; 11(4):241-7. PubMed ID: 7303718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of CPT-11 hydrolysis by human liver carboxylesterase isoforms hCE-1 and hCE-2.
    Humerickhouse R; Lohrbach K; Li L; Bosron WF; Dolan ME
    Cancer Res; 2000 Mar; 60(5):1189-92. PubMed ID: 10728672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of dibasic esters by rat nasal mucosal carboxylesterase.
    Bogdanffy MS; Kee CR; Hinchman CA; Trela BA
    Drug Metab Dispos; 1991; 19(1):124-9. PubMed ID: 1673384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trypanosoma cruzi: carboxylesterase activity in intact epimastigotes.
    Repetto Y; Aldunate J; Morello A
    Comp Biochem Physiol B; 1983; 76(1):61-4. PubMed ID: 6357621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of acrylate esters in rat tissue homogenates.
    Miller RR; Ayres JA; Rampy LW; McKenna MJ
    Fundam Appl Toxicol; 1981; 1(6):410-4. PubMed ID: 7185591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotoxicity of acrylic acid, methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate in L5178Y mouse lymphoma cells.
    Moore MM; Amtower A; Doerr CL; Brock KH; Dearfield KL
    Environ Mol Mutagen; 1988; 11(1):49-63. PubMed ID: 3338441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiation of acrylate ester toxicity by prior treatment with the carboxylesterase inhibitor triorthotolyl phosphate (TOTP).
    Silver EH; Murphy SD
    Toxicol Appl Pharmacol; 1981 Feb; 57(2):208-19. PubMed ID: 7222037
    [No Abstract]   [Full Text] [Related]  

  • 16. A physiologically based pharmacokinetic and pharmacodynamic model to describe the oral dosing of rats with ethyl acrylate and its implications for risk assessment.
    Frederick CB; Potter DW; Chang-Mateu MI; Andersen ME
    Toxicol Appl Pharmacol; 1992 Jun; 114(2):246-60. PubMed ID: 1609417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymic hydrolysis of nicotinate esters: comparison between plasma and liver catalysis.
    Durrer A; Wernly-Chung GN; Boss G; Testa B
    Xenobiotica; 1992 Mar; 22(3):273-82. PubMed ID: 1496819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-mutagenicity of 27 aliphatic acrylate esters in the Salmonella-microsome test.
    Waegemaekers TH; Bensink MP
    Mutat Res; 1984; 137(2-3):95-102. PubMed ID: 6381999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and pharmacological characterization of microsomal human liver flumazenil carboxylesterase.
    Kleingeist B; Böcker R; Geisslinger G; Brugger R
    J Pharm Pharm Sci; 1998; 1(1):38-46. PubMed ID: 10942971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrolysis of ester- and amide-type drugs by the purified isoenzymes of nonspecific carboxylesterase from rat liver.
    Mentlein R; Heymann E
    Biochem Pharmacol; 1984 Apr; 33(8):1243-8. PubMed ID: 6712734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.