BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 9020788)

  • 1. The iron-sulfur clusters 2 and ubisemiquinone radicals of NADH:ubiquinone oxidoreductase are involved in energy coupling in submitochondrial particles.
    van Belzen R; Kotlyar AB; Moon N; Dunham WR; Albracht SP
    Biochemistry; 1997 Jan; 36(4):886-93. PubMed ID: 9020788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous reduction of iron-sulfur protein and cytochrome b(L) during ubiquinol oxidation in cytochrome bc(1) complex.
    Zhu J; Egawa T; Yeh SR; Yu L; Yu CA
    Proc Natl Acad Sci U S A; 2007 Mar; 104(12):4864-9. PubMed ID: 17360398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct assignment of EPR spectra to structurally defined iron-sulfur clusters in complex I by double electron-electron resonance.
    Roessler MM; King MS; Robinson AJ; Armstrong FA; Harmer J; Hirst J
    Proc Natl Acad Sci U S A; 2010 Feb; 107(5):1930-5. PubMed ID: 20133838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory effect of palmitate on the mitochondrial NADH:ubiquinone oxidoreductase (complex I) as related to the active-de-active enzyme transition.
    Loskovich MV; Grivennikova VG; Cecchini G; Vinogradov AD
    Biochem J; 2005 May; 387(Pt 3):677-83. PubMed ID: 15571492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADH/NAD+ interaction with NADH: ubiquinone oxidoreductase (complex I).
    Vinogradov AD
    Biochim Biophys Acta; 2008; 1777(7-8):729-34. PubMed ID: 18471432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On 'Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria' by Julio F. Turrens, Adolfo Alexandre and Albert L. Lehninger.
    Turrens J
    Arch Biochem Biophys; 2022 Sep; 726():109298. PubMed ID: 35597297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of MT-ND1 in Cancer.
    Xu YC; Su J; Zhou JJ; Yuan Q; Han JS
    Curr Med Sci; 2023 Oct; 43(5):869-878. PubMed ID: 37642864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of Mitochondrial Dynamics and Mitophagy in Sevoflurane-Induced Cell Toxicity.
    Li M; Guo J; Wang H; Li Y
    Oxid Med Cell Longev; 2021; 2021():6685468. PubMed ID: 33728028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using a chimeric respiratory chain and EPR spectroscopy to determine the origin of semiquinone species previously assigned to mitochondrial complex I.
    Wright JJ; Fedor JG; Hirst J; Roessler MM
    BMC Biol; 2020 May; 18(1):54. PubMed ID: 32429970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Madecassic Acid Derivatives as Potential Anticancer Agents: Synthesis and Cytotoxic Evaluation.
    Valdeira ASC; Darvishi E; Woldemichael GM; Beutler JA; Gustafson KR; Salvador JAR
    J Nat Prod; 2019 Aug; 82(8):2094-2105. PubMed ID: 31343174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition.
    Terron A; Bal-Price A; Paini A; Monnet-Tschudi F; Bennekou SH; ; Leist M; Schildknecht S
    Arch Toxicol; 2018 Jan; 92(1):41-82. PubMed ID: 29209747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I.
    Hirst J; Roessler MM
    Biochim Biophys Acta; 2016 Jul; 1857(7):872-83. PubMed ID: 26721206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of semiquinone species in proton pumping mechanism by complex I.
    Nakamaru-Ogiso E; Narayanan M; Sakyiama JA
    J Bioenerg Biomembr; 2014 Aug; 46(4):269-77. PubMed ID: 25077450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nature and mechanism of superoxide production by the electron transport chain: Its relevance to aging.
    Muller F
    J Am Aging Assoc; 2000 Oct; 23(4):227-53. PubMed ID: 23604868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The reaction of NADPH with bovine mitochondrial NADH:ubiquinone oxidoreductase revisited: II. Comparison of the proposed working hypothesis with literature data.
    Albracht SP
    J Bioenerg Biomembr; 2010 Aug; 42(4):279-92. PubMed ID: 20632077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The reaction of NADPH with bovine mitochondrial NADH:ubiquinone oxidoreductase revisited: I. Proposed consequences for electron transfer in the enzyme.
    Albracht SP
    J Bioenerg Biomembr; 2010 Aug; 42(4):261-78. PubMed ID: 20628895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cluster N1 of complex I from Yarrowia lipolytica studied by pulsed EPR spectroscopy.
    Maly T; Grgic L; Zwicker K; Zickermann V; Brandt U; Prisner T
    J Biol Inorg Chem; 2006 Apr; 11(3):343-50. PubMed ID: 16502321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of the site of oxygen radical generation inside the complex I of heart and nonsynaptic brain mammalian mitochondria.
    Herrero A; Barja G
    J Bioenerg Biomembr; 2000 Dec; 32(6):609-15. PubMed ID: 15254374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EPR characterization of ubisemiquinones and iron-sulfur cluster N2, central components of the energy coupling in the NADH-ubiquinone oxidoreductase (complex I) in situ.
    Magnitsky S; Toulokhonova L; Yano T; Sled VD; Hägerhäll C; Grivennikova VG; Burbaev DS; Vinogradov AD; Ohnishi T
    J Bioenerg Biomembr; 2002 Jun; 34(3):193-208. PubMed ID: 12171069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of iron-sulphur cluster N2 from NADH: ubiquinone oxidoreductase by site-directed mutagenesis.
    Duarte M; Pópulo H; Videira A; Friedrich T; Schulte U
    Biochem J; 2002 Jun; 364(Pt 3):833-9. PubMed ID: 12049648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.