These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 9020885)

  • 1. Mechanism of glucose and maltose transport in plasma-membrane vesicles from the yeast Candida utilis.
    van den Broek PJ; van Gompel AE; Luttik MA; Pronk JT; van Leeuwen CC
    Biochem J; 1997 Jan; 321 ( Pt 2)(Pt 2):487-95. PubMed ID: 9020885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton-motive force-driven D-galactose transport in plasma membrane vesicles from the yeast Kluyveromyces marxianus.
    Van Leeuwen CC; Postma E; Van den Broek PJ; Van Steveninck J
    J Biol Chem; 1991 Jul; 266(19):12146-51. PubMed ID: 1648083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maltose/proton co-transport in Saccharomyces cerevisiae. Comparative study with cells and plasma membrane vesicles.
    Van Leeuwen CC; Weusthuis RA; Postma E; Van den Broek PJ; Van Dijken JP
    Biochem J; 1992 Jun; 284 ( Pt 2)(Pt 2):441-5. PubMed ID: 1318030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of proton motive force in genetic transformation of Bacillus subtilis.
    van Nieuwenhoven MH; Hellingwerf KJ; Venema G; Konings WN
    J Bacteriol; 1982 Aug; 151(2):771-6. PubMed ID: 6284711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism and energetics of dipeptide transport in membrane vesicles of Lactococcus lactis.
    Smid EJ; Driessen AJ; Konings WN
    J Bacteriol; 1989 Jan; 171(1):292-8. PubMed ID: 2492499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of maltose uptake and glucose excretion in Lactobacillus sanfrancisco.
    Neubauer H; Glaasker E; Hammes WP; Poolman B; Konings WN
    J Bacteriol; 1994 May; 176(10):3007-12. PubMed ID: 8188601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of Mal61p in Saccharomyces cerevisiae and characterization of maltose transport in artificial membranes.
    van der Rest ME; de Vries Y; Poolman B; Konings WN
    J Bacteriol; 1995 Oct; 177(19):5440-6. PubMed ID: 7559327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the electrochemical proton gradient in genetic transformation of Haemophilus influenzae.
    Bremer W; Kooistra J; Hellingwerf KJ; Konings WN
    J Bacteriol; 1984 Mar; 157(3):868-73. PubMed ID: 6321440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of a transmembrane pH gradient in epinephrine transport by chromaffin granule membrane vesicles.
    Schuldiner S; Fishkes H; Kanner BI
    Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3713-6. PubMed ID: 29292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of oxygen limitation on sugar metabolism in yeasts: a continuous-culture study of the Kluyver effect.
    Weusthuis RA; Visser W; Pronk JT; Scheffers WA; van Dijken JP
    Microbiology (Reading); 1994 Apr; 140 ( Pt 4)():703-15. PubMed ID: 8012592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro translocation of protein across Escherichia coli membrane vesicles requires both the proton motive force and ATP.
    Yamane K; Ichihara S; Mizushima S
    J Biol Chem; 1987 Feb; 262(5):2358-62. PubMed ID: 3029075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of glucose 6-phosphate transport by Escherichia coli.
    Sonna LA; Ambudkar SV; Maloney PC
    J Biol Chem; 1988 May; 263(14):6625-30. PubMed ID: 3283129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles. I. Effect of an artificially imposed H+ gradient on Ca2+ uptake.
    Ueno T; Sekine T
    J Biochem; 1981 Apr; 89(4):1239-46. PubMed ID: 6265434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of ionophores to study Na+ transport pathways in renal microvillus membrane vesicles.
    Aronson PS; Kinsella JL
    Fed Proc; 1981 Jun; 40(8):2213-7. PubMed ID: 6263713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The proteoliposomal steady state. Effect of size, capacitance and membrane permeability on cytochrome-oxidase-induced ion gradients.
    Wrigglesworth JM; Cooper CE; Sharpe MA; Nicholls P
    Biochem J; 1990 Aug; 270(1):109-18. PubMed ID: 2168698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton motive force-driven and ATP-dependent drug extrusion systems in multidrug-resistant Lactococcus lactis.
    Bolhuis H; Molenaar D; Poelarends G; van Veen HW; Poolman B; Driessen AJ; Konings WN
    J Bacteriol; 1994 Nov; 176(22):6957-64. PubMed ID: 7961458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutral amino acid transport by membrane vesicles of Streptococcus cremoris is subject to regulation by internal pH.
    Driessen AJ; Kodde J; de Jong S; Konings WN
    J Bacteriol; 1987 Jun; 169(6):2748-54. PubMed ID: 3108240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium transport in membrane vesicles of Streptococcus cremoris.
    Driessen AJ; Konings WN
    Eur J Biochem; 1986 Aug; 159(1):149-55. PubMed ID: 3017712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional purification of the monocarboxylate transporter of the yeast Candida utilis.
    Baltazar F; Cássio F; Leão C
    Biotechnol Lett; 2006 Aug; 28(16):1221-6. PubMed ID: 16802097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.