BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 9020893)

  • 1. Sarco/endoplasmic reticulum Ca2+-ATPase isoforms: diverse responses to acidosis.
    Wolosker H; Rocha JB; Engelender S; Panizzutti R; De Miranda J; de Meis L
    Biochem J; 1997 Jan; 321 ( Pt 2)(Pt 2):545-50. PubMed ID: 9020893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological differentiation between intracellular calcium pump isoforms.
    Engelender S; De Meis L
    Mol Pharmacol; 1996 Nov; 50(5):1243-52. PubMed ID: 8913356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Ca(2+)-ATPase isoforms of platelets are located in distinct functional Ca2+ pools and are uncoupled by a mechanism different from that of skeletal muscle Ca(2+)-ATPase.
    Engelender S; Wolosker H; de Meis L
    J Biol Chem; 1995 Sep; 270(36):21050-5. PubMed ID: 7673132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethanol has different effects on Ca(2+)-transport ATPases of muscle, brain and blood platelets.
    Mitidieri F; de Meis L
    Biochem J; 1995 Dec; 312 ( Pt 3)(Pt 3):733-7. PubMed ID: 8554513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Ca2+ transport by sarcoplasmic reticulum Ca2+-ATPase at limiting [Ca2+].
    Berman MC
    Biochim Biophys Acta; 1999 Apr; 1418(1):48-60. PubMed ID: 10209210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of arsenate on the Ca2+ ATPase of sarcoplasmic reticulum.
    Alves EW; de Meis L
    Eur J Biochem; 1987 Aug; 166(3):647-51. PubMed ID: 2956098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium efflux from platelet vesicles of the dense tubular system. Analysis of the possible contribution of the Ca2+ pump.
    Teijeiro RG; Sotelo Silveira JR; Sotelo JR; Benech JC
    Mol Cell Biochem; 1999 Sep; 199(1-2):7-14. PubMed ID: 10544946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of pH on the transient-state kinetics of Ca2+-Mg2+-ATPase of cardiac sarcoplasmic reticulum. A comparison with skeletal sarcoplasmic reticulum.
    Mandel F; Kranias EG; Grassi de Gende A; Sumida M; Schwartz A
    Circ Res; 1982 Feb; 50(2):310-7. PubMed ID: 6120049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissection of the functional differences between sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 1 and 3 isoforms by steady-state and transient kinetic analyses.
    Dode L; Vilsen B; Van Baelen K; Wuytack F; Clausen JD; Andersen JP
    J Biol Chem; 2002 Nov; 277(47):45579-91. PubMed ID: 12207029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake of Ca2+ mediated by the (Ca2+ + Mg2+)-ATPase in reconstituted vesicles.
    Gould GW; McWhirter JM; East JM; Lee AG
    Biochim Biophys Acta; 1987 Nov; 904(1):36-44. PubMed ID: 2959320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration of Ca2+ fluxes in brain microsomes by K+ and Na+: modulation by sulfated polysaccharides and trifluoperazine.
    Rocha JB; Wolosker H; Souza DO; de Meis L
    J Neurochem; 1996 Feb; 66(2):772-8. PubMed ID: 8592151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of the low affinity Ca2+-binding sites of skeletal muscle and blood platelets Ca2+-ATPase by nordihydroguaiaretic acid.
    Barata H; Cardoso CM; Wolosker H; de Meis L
    Mol Cell Biochem; 1999 May; 195(1-2):227-33. PubMed ID: 10395087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A kinetic model for Ca2+ efflux mediated by the Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum.
    McWhirter JM; Gould GW; East JM; Lee AG
    Biochem J; 1987 Aug; 245(3):713-21. PubMed ID: 2959277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate regulation of the sarcoplasmic reticulum ATPase. Transient kinetic studies.
    Scofano HM; Vieyra A; de Meis L
    J Biol Chem; 1979 Oct; 254(20):10227-31. PubMed ID: 158593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+ transport in human platelet membranes. Kinetics of active transport and passive release.
    Adunyah SE; Dean WL
    J Biol Chem; 1986 Mar; 261(7):3122-7. PubMed ID: 2936733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trans-magnesium dependency of ATP-dependent calcium uptake into sarcoplasmic reticulum of skeletal muscle.
    Morsy FA; Shamoo AE
    Magnesium; 1985; 4(4):182-7. PubMed ID: 2934589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pH dependence of the cardiac sarcolemmal Ca2(+)-transporting ATPase: evidence that the Ca2+ translocator bears a doubly negative charge.
    Dixon DA; Haynes DH
    Biochim Biophys Acta; 1990 Nov; 1029(2):274-84. PubMed ID: 2147113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of acidosis and alkalosis on the sarcoplasmic reticulum of the heart].
    Holguín JA; Sierra M; Ramírez MC
    Arch Inst Cardiol Mex; 1985; 55(3):197-207. PubMed ID: 2932071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of pH, temperature, and calcium concentration on the stoichiometry of the calcium pump of sarcoplasmic reticulum.
    Meltzer S; Berman MC
    J Biol Chem; 1984 Apr; 259(7):4244-53. PubMed ID: 6231292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermolecular conformational coupling and free energy exchange enhance the catalytic efficiency of cardiac muscle SERCA2a following the relief of phospholamban inhibition.
    Mahaney JE; Albers RW; Waggoner JR; Kutchai HC; Froehlich JP
    Biochemistry; 2005 May; 44(21):7713-24. PubMed ID: 15909986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.