These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9021322)

  • 1. Acid anion profiles in dental plaque following consumption of cereal-based foods and fruits.
    Pollard MA; Higham SM; Curzon ME; Edgar WM
    Eur J Oral Sci; 1996; 104(5-6):535-9. PubMed ID: 9021322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential cariogenicity of starches and fruits as assessed by the plaque-sampling method and an intraoral cariogenicity test.
    Pollard MA
    Caries Res; 1995; 29(1):68-74. PubMed ID: 7867054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acid formation in sucrose-exposed dental plaque in relation to caries incidence in schoolchildren.
    Borgström MK; Edwardsson S; Svensäter G; Twetman S
    Clin Oral Investig; 2000 Mar; 4(1):9-12. PubMed ID: 11218518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between plaque pH, plaque acid anion profiles, and oral carbohydrate retention after ingestion of several 'reference foods' by human subjects.
    Dodds MW; Edgar WM
    J Dent Res; 1988 May; 67(5):861-5. PubMed ID: 3163354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cariogenic potential of pooled plaque fluid from exposed root surfaces in humans.
    Margolis HC; Zhang YP; Gewirtz A; Van Houte J; Moreno EC
    Arch Oral Biol; 1993 Feb; 38(2):131-8. PubMed ID: 8476342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of methods for determining the acido/cariogenic potential of foods: a comparison of several different methods.
    Curzon ME; Pollard MA
    Caries Res; 1996; 30(2):126-31. PubMed ID: 8833136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acidogenic potential and total salivary carbohydrate content of expectorants following the consumption of some cereal-based foods and fruits.
    Pollard MA; Imfeld T; Higham SM; Agalamanyi EA; Curzon ME; Edgar WM; Borgia S
    Caries Res; 1996; 30(2):132-7. PubMed ID: 8833137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of caries activity with the composition of dental plaque fluid.
    Gao XJ; Fan Y; Kent RL; Van Houte J; Margolis HC
    J Dent Res; 2001 Sep; 80(9):1834-9. PubMed ID: 11926243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dental plaque mass and acid production activity of the microbiota on teeth.
    Borgström MK; Edwardsson S; Sullivan A; Svensäter G
    Eur J Oral Sci; 2000 Oct; 108(5):412-7. PubMed ID: 11037757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular administration of lactate dehydrogenase and its effects on human plaque pH and acid anion concentrations.
    Higham SM; Edgar WM
    Caries Res; 1991; 25(3):197-200. PubMed ID: 1878918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo assessment of dental plaque pH changes in children after ingestion of snack foods.
    Koparal E; Eronat C; Eronat N
    ASDC J Dent Child; 1998; 65(6):478-83, 438-9. PubMed ID: 9883323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in lactate and other ions in plaque and saliva after a fluoride rinse and subsequent sucrose administration.
    Vogel GL; Zhang Z; Chow LC; Schumacher GE
    Caries Res; 2002; 36(1):44-52. PubMed ID: 11961330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of beverages on plaque acidogenicity after a sugary challenge.
    Naval S; Koerber A; Salzmann L; Punwani I; Johnson BR; Wu CD
    J Am Dent Assoc; 2013 Jul; 144(7):815-22. PubMed ID: 23813263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of micro-organisms in caries etiology.
    van Houte J
    J Dent Res; 1994 Mar; 73(3):672-81. PubMed ID: 8163737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation of dental plaque to sorbitol after 3 months' exposure to chewing gum.
    Waaler SM; Rölla G; Assev S
    Scand J Dent Res; 1993 Apr; 101(2):84-6. PubMed ID: 8456255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of frequent consumption of starchy food items on enamel and dentin demineralization and on plaque pH in situ.
    Lingström P; Birkhed D; Ruben J; Arends J
    J Dent Res; 1994 Mar; 73(3):652-60. PubMed ID: 8163736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of lactate dehydrogenase and nicotinamide adenine dinucleotide on human dental plaque pH and acid anion concentrations.
    Higham SM; Edgar WM
    Arch Oral Biol; 1995 Jan; 40(1):55-9. PubMed ID: 7748113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Parafilm and cheese chewing on human dental plaque pH and metabolism.
    Higham SM; Edgar WM
    Caries Res; 1989; 23(1):42-8. PubMed ID: 2920383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of salivary clearance of sucrose and fluoride on human dental plaque acidogenicity.
    Oliveby A; Weetman DA; Geddes DA; Lagerlöf F
    Arch Oral Biol; 1990; 35(11):907-11. PubMed ID: 2282002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plaque pH response to snack foods in children with different levels of mutans streptococci.
    Thaweboon S; Suddhasthira T; Thaweboon B; Soo-Ampon S; Dechkunakorn S
    Southeast Asian J Trop Med Public Health; 2007 May; 38(3):598-603. PubMed ID: 17877240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.