BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 9021627)

  • 1. Direct bladder stimulation with suture electrodes promotes voiding in a spinal animal model: a technical report.
    Walter JS; Wheeler JS; Cai W; Wurster RD
    J Rehabil Res Dev; 1997 Jan; 34(1):72-81. PubMed ID: 9021627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a suture electrode for direct bladder stimulation in a lower motor neuron lesioned animal model.
    Walter JS; Wheeler JS; Cai W; King WW; Wurster RD
    IEEE Trans Rehabil Eng; 1999 Jun; 7(2):159-66. PubMed ID: 10391586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A spinal cord injured animal model of lower urinary tract function: observations using direct bladder and pelvic plexus stimulation with model microstimulators.
    Walter JS; Wheeler JS; Fitzgerald MP; McDonnell A; Wurster RD
    J Spinal Cord Med; 2005; 28(3):246-54. PubMed ID: 16048143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of direct bladder stimulation with stainless steel woven eye electrodes.
    Walter JS; Wheeler JS; Cogan SF; Plishka M; Riedy LW; Wurster RD
    J Urol; 1993 Dec; 150(6):1990-6. PubMed ID: 8230551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of direct bladder and sacral nerve stimulation in spinal cats.
    Walter JS; Sidarous R; Robinson CJ; Wheeler JS; Wurster RD
    J Rehabil Res Dev; 1992; 29(2):13-22. PubMed ID: 1578388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bladder and urethral sphincter responses evoked by microstimulation of S2 sacral spinal cord in spinal cord intact and chronic spinal cord injured cats.
    Tai C; Booth AM; de Groat WC; Roppolo JR
    Exp Neurol; 2004 Nov; 190(1):171-83. PubMed ID: 15473990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of capsaicin-sensitive afferent fibers in the lower urinary tract dysfunction induced by chronic spinal cord injury in rats.
    Cheng CL; de Groat WC
    Exp Neurol; 2004 Jun; 187(2):445-54. PubMed ID: 15144870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bladder-wall and pelvic-plexus stimulation with model microstimulators: Preliminary observations.
    Walter JS; Fitzgerald MP; Wheeler JS; Orris B; McDonnell A; Wurster RD
    J Rehabil Res Dev; 2005; 42(2):251-60. PubMed ID: 15944889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor evoked potentials (MEP) and evoked pressure curves (EPC) from the urethral compressive musculature (UCM) by functional magnetic stimulation in healthy volunteers and patients with neurogenic incontinence.
    Schmid DM; Curt A; Hauri D; Schurch B
    Neurourol Urodyn; 2005; 24(2):117-27. PubMed ID: 15616965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urethral evoked sympathetic skin responses and viscerosensory evoked potentials as diagnostic tools to evaluate urogenital autonomic afferent innervation in spinal cord injured patients.
    Schmid DM; Reitz A; Curt A; Hauri D; Schurch B
    J Urol; 2004 Mar; 171(3):1156-60. PubMed ID: 14767291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of bladder outlet resistance by selective stimulation of the ventral sacral root using high frequency blockade: a chronic study in spinal cord transected dogs.
    Abdel-Gawad M; Boyer S; Sawan M; Elhilali MM
    J Urol; 2001 Aug; 166(2):728-33. PubMed ID: 11458125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic instrumentation with model microstimulators in an animal model of the lower urinary tract.
    Walter JS; Wheeler JS; Fitzgerald MP; McDonnell A; Wurster RD
    J Spinal Cord Med; 2005; 28(2):114-20. PubMed ID: 15889699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the feasibility of urinary bladder evacuation by direct spinal cord stimulation. II. Poststimulus voiding: a way to overcome outflow resistance.
    Jonas U; Tanagho EA
    Invest Urol; 1975 Sep; 13(2):151-3. PubMed ID: 1184339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the feasibility of urinary bladder evacuation by direct spinal cord stimulation. I. Parameters of most effective stimulation.
    Jonas U; Heine JP; Tanagho EA
    Invest Urol; 1975 Sep; 13(2):142-50. PubMed ID: 1184338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved voiding in response to electrical stimulation of the spinal cord of paraplegic dogs.
    Dreyer DA; Nashold BS; Somjen G; Grimes JH
    Invest Urol; 1976 Jul; 14(1):54-6. PubMed ID: 1085292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective activation of the sacral anterior roots for induction of bladder voiding.
    Bhadra N; Grünewald V; Creasey GH; Mortimer JT
    Neurourol Urodyn; 2006; 25(2):185-93. PubMed ID: 16224799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct bladder stimulation with percutaneous electrodes and impedance monitoring of volume in an SCI animal model.
    Walter JS; Zaszczurynski P; Cai W; Wheeler JS; Riedy L; Scarpine VE
    J Spinal Cord Med; 1995 Apr; 18(2):98-102. PubMed ID: 7640980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arrays for chronic functional microstimulation of the lumbosacral spinal cord.
    McCreery D; Pikov V; Lossinsky A; Bullara L; Agnew W
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):195-207. PubMed ID: 15218934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laparoscopic implantation of temporary electrodes for bladder stimulation in dogs.
    Hübner WA; Plas EG; Pflüger H; Hauck M; Miko I; Furka I
    Neurourol Urodyn; 1996; 15(2):149-55. PubMed ID: 8713561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A catheter based method to activate urethral sensory nerve fibers.
    Gustafson KJ; Creasey GH; Grill WM
    J Urol; 2003 Jul; 170(1):126-9. PubMed ID: 12796663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.